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1 Introduction

When we do an experiment, we obtain some data D. We typically do this experiment in
order to constrain some parameters θ of a model. By ‘model’, we mean that the probability
of obtaining the data θ for a given set of parameters is given by the likelihood L = P (D|θ).
Inference is the process of estimating the true values of the parameters θ based on the data
D. This can be done by inverting the probability distribution using Bayes’ Theorem:

P (θ|D) =
P (D|θ)P (θ)

P (D)
≡ L(D|θ)π(θ)

Z(D)

where in the second equality we have done some relabelling:

• The evidence Z(D) is essentially a normalisation constant on P (θ|D), which naturally
must integrate (dθ) to 1. Note that it does not depend on θ.

• The prior π(θ) captures our ignorance of the parameters θ. If we know very little
about the values of θ, the function π(θ) will be quite broad and P (θ|D) will be very
similar to L(D|θ). If we already have a pretty good idea of the parameters then π(θ)
will be very sharp; in the limit that we know that the true values of θ are θ∗, we have
π(θ) = δ(θ − θ∗) = P (θ|D): whatever data we get won’t change our mind.

• P (θ|D) is called the posterior.

1.1 Choosing Priors

Controversially, in Bayesian probability we are more or less free to choose the prior function.
Typically people use a uniform prior π(θ) = 1Θ(θ) to profess no knowledge of θ at all except
that it is within some region Θ of parameter space. Alternatively, “scale parameters” which
are > 0 choose priors such that π(θ)dθ = π(αθ)d(αθ)⇒ π ∝ 1/θ.

It can be useful for algebraic reasons to choose a prior such that, for a given likelihood
function, the posterior has the same functional form as the prior; such priors are called conjugate
priors of that particular likelihood.

1.2 Information

If the data are very high quality, then the likelihood is a strongly peaked function of θ: the range
of θ which could produce the given D is very small. This ‘quality’ of a likelihood is quantified
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by the information I(θ). The information is given in terms of the score S(θ) = ∇θ lnL.
Consider the expectation of S, taken over all possible datasets (we denote the space of all
possible datasets as D); the probability of a given dataset D ∈ D is given by L(D|θ∗):

ED[S] =

∫
D
S(θ)L(D|θ∗)dD =

∫
D
∇θ[lnL(D|θ)] L(D|θ∗) dx =

∫
D
∇θ[L(D|θ)]

L(D|θ∗)
L(D|θ)

dD

Now the above, the expectation value of the score, is a function of θ: we can take loads of
datasets and measure the score for each (using a particular choice of the parameters θ), and
we will find that the expected value of the score is as above. If we evaluate the above quantity
at the true value θ∗, we get:

ED[S]

∣∣∣∣
θ∗

=

∫
D
∇θ[L(D|θ)]

∣∣∣∣
θ∗

dD =∇θ

[∫
D
L(D|θ) dD︸ ︷︷ ︸

1

]∣∣∣∣∣
θ∗

=∇θ1
∣∣∣
θ∗

= 0

The information, rather than the expectation of the score, is the variance of the score: I(θ) =
ED[S(θ)2] − ED[S(θ)]2. If we evaluate the information at the true value θ∗, then the second
term vanishes as we have shown, and we are left with:

I(θ∗) = ED
[
S(θ∗)2

]
= · · · = −

∫
D

∂2 ln(D|θ∗)
∂θ2 L(D|θ∗) dD

which is related to the second derivative of L with respect to θ, evaluated at θ∗. This is a good
quantifier of how informative L is: if the likelihood function is very strongly peaked around
the true value, then the second derivative will be very negative and I will be high.

If we zoom in on the function lnL(D|θ) near θ∗, we get the Taylor expansion:

lnL(D|θ) ≈ lnL(D|θ∗) + (θ − θ∗) · S(θ∗) +
1

2
(θ − θ∗)2 ∂

2 lnL(D|θ)

∂θ2

∣∣∣∣
θ∗

Averaging across an ensemble of datasets, and using the results above, we obtain:

ED[lnL(D|θ)] ≈ const.− I(θ∗)

2
(θ − θ∗)2

1.3 Summary Statistics

The marginal distribution is the posterior distribution for a subset of the parameters θ.
This might be done because θ may contain a lot of nuisance parameters. Given a posterior
P (θ|D), the probability distribution for some subset φ ∈ θ is given by:

P (φ|D) =

∫
θi /∈φ

P (θ|D) dθi

Point estimates of θ might be the mean ED[θ] =
∫

dθP (θ|D), the mode (AKA the maxi-
mum a posteriori (MAP) value), or perhaps the median of each of the 1D marginal distributions

Credible intervals, e.g. a 90% credible interval, are a Bayesian version of error bars. Lots
of them are flawed, but we might choose the narrowest possible interval containing the right %
of the posterior distribution; or the highest density region, where the boundary of the interval
is an isoprobability surface; or in 1D we might choose an equal-tailed distribution.
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2 Markov Chain Monte Carlo (MCMC) Methods

Often, the posterior P (θ|D) is difficult to generate analytically, or even impossible. Maybe
the likelihood L(D|θ) is calculated by some simulation, with θ as input parameters, rather
than simply a function. However, it is usually possible to sample from the posterior distribu-

tion, generating a sequence of θi
iid∼ P (θ|D). In this way, we can approximate the posterior

distribution by drawing a large sample (of size N).
Simple methods – such as the accept-reject method, the inverse CDF method, or directly

fitting a histogram – all scale horribly to multiple dimensions. However, the family of Markov
chain Monte Carlo methods are often not too bad. They also apply to sampling a general
probability distribution P ∗(x), not just a posterior P (θ|D). For conciseness and consistency,
we will use the variable x to refer to the variable we are trying to sample, but within this course
the x are thought of as the parameters of a model, distributed according to the posterior.

2.1 Basic Concepts

2.1.1 Markov Chains

A Markov chain is a sequence of points {xi} in the sample space X (in Bayesian terms, our
parameter space Θ), whereby the probability distribution of the next sample xi+1 depends only
on the current value xi:

P (xi+1|x0,x1, . . . ,xi) = P (xi+1|xi)

This is effectively a “transition probability”.
Many Markov chains are time-homogeneous1: the transition probability from one point to

another doesn’t change with “time” (that is, i):

P (xi+1|xi) = ρ(x′,x)

for some ρ, which may not be symmetric. For example, we have P (x1|x0) = ρ(x1,x0). As
for P (x2|x0), this will be the sum over the possibilities of arriving at x2 via all the possible
intermediate value of x1:

P (x2|x0) =

∫
X

dx1 P (x2|x1)P (x1|x0) =

∫
X

dx1 ρ(x2,x1)ρ(x1,x0)

and so on.

2.1.2 Stationary Distribution and the Detailed Balance Condition

Different MCMC methods consist essentially of different choices of ρ(x′,x). To be a suit-
able transition function, we require that the limit distribution λ(xi) ≡ limi→∞ P (xi|x0) tends
towards the target distribution P ∗(x).

If the samples in our MCMC chain reach the target distribution, we’d like them to stay
there. In other words, if xi ∼ P ∗(x), we want xi+1 ∼ P ∗(x) also. Now xi+1|xi ∼ ρ(xi+1,xi),
so this condition requires:

P (xi+1) ≡
∫
X

dxi P (xi+1|xi)P (xi) =

∫
X

dxi ρ(xi+1,xi)P
∗(xi)

1As far as I can tell, this isn’t a requirement for MCMC, but is simply a convenient choice.
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to be equal to the target distribution P ∗(xi+1). This requires ρ to be such that:

P ∗(x′) =

∫
dx P ∗(x)ρ(x′,x) (S)

Technically, this is equivalent to imposing ρ such that the chain reaches a stationary distribution
that is equal to the target distribution2 In the limit of large i, this will also be the limit
distribution.

The above condition can be quite difficult to show for many MCMC methods. Instead, we
can derive a stricter condition, which is sufficient, but not necessary, for having a stationary
distribution. This is the detailed balance condition:

P ∗(x)ρ(x′,x) = P ∗(x′)ρ(x,x′) (DBC)

That this is sufficient for the chain to reach a stationary distribution of the target distribution
can easily be shown by integrating with respect to x′:∫

dx′ P ∗(x)ρ(x′,x) =

∫
dx′ P ∗(x′)ρ(x,x′) ⇒ P ∗(x) =

∫
dx′ P ∗(x′)ρ(x,x′)

from which S can be derived simply by exchanging the variables in the various functions. Note
that the converse doesn’t hold.

The significance of DBC is that if the chain reaches the point x, it is equally likely to move
to the point x′ as if it reached the point x′ and move to the point x. This can be easily shown
by calculating the probabilities P (x ∈ A ∩ x′ ∈ B) and vice versa, where A,B ⊂ X ; using
detailed balance one can show the two to be equal.

2.2 Metropolis-Hastings

The Metropolis-Hastings algorithm makes use of a proposal distribution Q(y|xi) to suggest
candidates for xi+1; for example:

Q(y|xi) =
1√
2π

exp

(
1

2
‖y − xi‖2

)
At a given point in the chain xi, a point y ∼ Q(y|xi) is drawn (Q should be chosen as a
distribution that is easy to sample!). Whether y is then accepted as the sample in the Markov
chain xi+1 depends on the quantity:

a(y,xi) =
P ∗(y)Q(xi|y)

P ∗(xi)Q(y|xi)

Note that if Q is symmetric in its two arguments (as in the normal example given), then a
reduces to P ∗(y)/P ∗(xi); this special case is described as the Metropolis algorithm. Also, note
that because we take the ratio of two target distributions, it doesn’t need to be normalised. If
a is larger than a number u ∼ U(0, 1), then xi+1 = y. Otherwise, the sample is rejected; we
leave xi+1 = xi.

2By swapping out P ∗(x) for another distribution, you can make ρ produce a chain that has an arbitrary
stationary distribution.
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We now show that this algorithm corresponds to a ρ(xi+1,xi) that has the right stationary
distribution, by showing that it satisfies DBC. We first derive ρ(x′,x):

ρ(x′,x) ≡ P (x′|x) =

∫
dy P (x′|x,y)P (y|x) =

∫
dy P (x′|x,y)Q(y|x)

=

∫
dy
[
P (x′|x,y, A(y,x) > u) · P (A(y,x) > u|x)

+ P (x′|x,y, A(y,x) < u) · P (A(y,x) < u|x)
]
·Q(y|x)

where A(y,x) ≡ min(1, a(y,x)). The four above probabilities are all known:

P (x′|x,y, A > u) = δ(x′ − y) P (A > u|x) = A

P (x′|x,y, A < u) = δ(x′ − x) P (A < u|x) = 1− A

giving us:

ρ(x′,x) =

∫
dy
[
δ(x′ − y)A(y,x) + δ(x′ − x)(1− A(y,x))

]
Q(y|x)

= A(x′,x)Q(x′|x) + δ(x′ − x)

∫
dy (1− A(y,x))Q(y|x)

We can now show that this satisfies DBC. Note from the definition of a, that a(x,x′) =
1/a(x′,x). There are therefore two possibilities: either A(x,x′) < 1 and A(x′,x) = 1, or vice
versa. Consider the first case: the LHS and RHS of the DBC are then given by:

LHS = P ∗(x)ρ(x′,x) = P ∗(x)

[
Q(x′|x) + δ(x′ − x)

∫
dy (1− A(y|x))Q(y|x)

]
RHS = P ∗(x′)ρ(x,x′) = P ∗(x′)

[
P ∗(x)Q(x′|x)

P ∗(x′)Q(x|x′)
Q(x|x′) + δ(x− x′)

∫
dy (1− A(y|x))Q(y|x)

]
It can be seen that the delta terms are equal to each other, most easily when one considers that
they will each be 0 unless x′ = x. Similarly, when one simplifies the fraction in the first term
of the RHS, it can be seen that this is equal to the LHS. Thus detailed balance is satisfied;
thus this algorithm produces a transition probability ρ(x′,x) which leads to the Markov chain’s
stationary distribution being the target distribution P ∗(x).

2.2.1 Choice of Proposal Distribution Q(y|x)

The efficiency of the algorithm depends on the choice of proposal distribution Q(y|x); generally
there is no good way to choose this first time. If the proposal distribution is very sharp
compared to the target distribution, then xi+1 will be very close to xi, which will mean that
the two are not really independent, and also that if the starting position is unfortunately far
away from regions with a high value of the target distribution then it will take a while for
the samples to reach this distribution. To counteract these, we thin the chain and remove
a burn-in. By thinning the chain, we mean we only take every T samples as being iid, and
thus representative samples of the target distribution. A good value of T can be estimated
by calculating the autocorrelation length of the chain (the distance over which the samples are
intercorrelated, rather than being dictated by the target distribution), and setting T to a value
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of a few times the autocorrelation length. To decide how large the burn-in should be, one can
employ trace plots, plotting the value of each parameter against distance along the chain. It is
typically clear roughly after how many samples the chain has converged.

Choosing a large proposal distribution is also problematic, as this will often lead to y being
a long way away from xi, and hence P ∗(y) being very small, rejection being more likely, and
it being less likely that the chain will move and explore the parameter space efficiently.

2.3 Gibbs Sampling

Gibbs sampling samples from the 1D conditional distributions for each parameter, such as
P (x0|x1, x2, . . . ); there are as many such distributions as there are parameters. We will denote
these as,

P (xk|x−k) = P (xk|x0, . . . , xk−1, xk+1, . . . ) ≡ P ∗(x)∫
P ∗(x) dxk

These distributions are effectively slices through the full distribution. The Gibbs sampling
procedure is as follows. At each step, the following sample is produced by randomly selecting
a particular component k, and changing the kth component of x to a value sampled from the
conditional distribution. The components of xi+1 are thus given by:

x′j =

{
y ∼ P (xk|x−k) j = k

xj j 6= k

Which component k to change at each step is typically chosen such that each component
is equally likely to be selected (with probability 1/ dim x), but a variant allows weightings
wk, where

∑
j wj = 1. Note again that the normalised distribution is not required, as the

conditional distribution involves a quotient. However, unlike Metropolis-Hastings, Gibbs moves
at every step: xi+1 6= xi.

We now show that the Gibbs sampling method satisfies DBC. We can find ρ(x′,x) relatively
easily:

ρ(x′,x) ≡ P (x′|x) = wkδ(x
′−k − x−k)P (x′k|x−k)

Consider now the LHS of DBC:

LHS = P ∗(x)ρ(x′,x) = wkP
∗(x)δ(x′−k − x−k)P (x′k|x−k)

and note that the RHS is the same under x′ ↔ x. Now both these will be 0, except where
x′ = x, at which point they will clearly both be equal. Thus DBC is satisfied and the Gibbs
rule leads to a satisfactory stationary distribution.

A variant on the Gibbs sampling is the Gibbs sweep, which is aimed at reducing the sig-
nificant redundancy present in consecutive samples. In this algorithm, rather than picking a
component to vary each time, we cycle through the components:

x′0 ← y ∼ P (x0|x1, x2, . . . )

x′1 ← y ∼ P (x1|x′0, x2, . . . )

Note that after each component has been sampled, for subsequent samples we need to condition
the distribution on the new components, otherwise it turns out that this will not converge to
the target distribution. In fact, it turns out that the Gibbs sweep doesn’t actually satisfy DBC,
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though it does actually converge to the target distribution (recall that DBC is sufficient, but not
necessary). This is shown below for the two-dimensional case, where we go from x = (x0, x1)
to x′ = (x′0, x1) via y = (x′0, x1). We first calculate the transition probability:

ρ(x′,x) ≡ P (y|x)P (x′|y) =
P ∗(x′0, x1)∫
P ∗(x, x1) dx

P ∗(x′0, x′1)∫
P ∗(x′0, x) dx

Substituting into the RHS of S,

RHS =

∫
dx P ∗(x)

P ∗(x′0, x1)∫
P ∗(x, x1) dx

P ∗(x′0, x′1)∫
P ∗(x′0, x) dx

=
P ∗(x′0, x′1)∫
P ∗(x′0, x) dx

∫
dx0

∫
dx1 P ∗(x0, x1)

P ∗(x′0, x1)∫
P ∗(x, x1) dx

=
P ∗(x′0, x′1)∫
P ∗(x′0, x) dx

∫
dx1 P ∗(x′0, x1)∫

P ∗(x, x1) dx

∫
dx0P ∗(x0, x1)

= P ∗(x′0, x′1) = P ∗(x′)

where two pairs of integrals have cancelled from the penultimate line, giving the LHS of S and
showing that the Gibbs sweep has a stationary distribution equal to the target.

Another variant of Gibbs is the blocked Gibbs sampler, which groups together “blocks” of
components, and samples from the subspaces of these blocks one at a time, conditional on the
components of the other blocks.

2.4 Hamiltonian Monte Carlo

Both Metropolis-Hastings and Gibbs suffer from “random walk” behaviour, where successive
samples are quite close together, and it takes a long time to explore the sample space. Hamil-
tonian Monte Carlo (HMC) allows for larger steps, and makes sure those steps are not in a
terrible direction. It is based on principles from Hamiltonian dynamics, and there is termi-
nology associated with this. For example, we usually work in terms of the “potential energy”
V (x) = − logP ∗(x) + const.. Unlike the previous methods, we also need the gradient ∇V ,
though this is sometimes accessible by autodifferentiation.

HMC proceeds by first doubling the dimensionality of the space, by tacking on the end
of the samples x a vector p of the same dimensionality. For p, we invent a new distribution
Q(p), which is essentially arbitrary other than Q(−p) = Q(p); it should also be easy to sample
from: we often choose Q ∝ exp

(
−1

2
pᵀΣ−1p

)
, and hence − logQ = 1

2
pᵀΣ−1p. We then define

K(p) = − logQ(p) + const. as the “kinetic energy”.
As might be anticipated, we then define the Hamiltonian H = K + V = − logR(x,p), for

some quantity R = P ∗(x)Q(p) which we can show is the joint distribution of x and p:∫
R(x,p) dp = e−V (x)

∫
e−K(p) dp

∫
R(x,p) dx = e−K(p)

∫
e−V (x) dx

= P ∗(x)

∫
Q(p)dp = Q(p)

∫
P ∗(x)dx

= P ∗(x) = Q(p)

Sampling then proceeds in this double-dimensional space using the equations of Hamiltonian
dynamics:

dxk

dt
=
∂H
∂pk

;
dpk

dt
= − ∂H

∂xk
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One chooses a timestep s, and integrates the above equations, using the leapfrog algorithm3:

p← p− 1

2
s∇xE

x← x + sΣp

p← p− 1

2
s∇xE

For each sample, this is repeated L times, where L is some hyperparameter. This will of course
not integrate the equations exactly, but there will be an error of order s2 difference between
Hfin and Hinit.

As with Metropolis-Hastings, we then either accept or reject the new values of x and p,
based on a quantity a compared to a random variable u ∼ U(0, 1). This time, a is defined as

a = exp(Hinit −Hfin)

If a > u, then the new x (and p) are accepted as xi+1; if not then xi+1 = xi. Most samples
should be selected if s and L are small, as then Hinit ≈ Hfin.

A popular variation on Hamiltonian Monte Carlo is the no U-turn sampler (NUTS), which
effectively allows for real-time choice of L. NUTS evolves the Hamiltonian forwards and back-
wards in time until a U-turn occurs, when we should stop because that would be wasted time.

2.5 Slice Sampling

As a final small one, slice sampling is similar to accept-reject sampling. It’s very simple.
To go from xi to xi+1, first sample y ∼ U(0, P ∗(xi)) uniformly from 0 to P ∗(xi). Then,
find all the regions of sample space where P ∗(x) > y, and sample uniformly from those:
xi+1 ∼ U({x : P ∗(x) > y}). That’s it! P ∗(x) doesn’t even need to be normalised.

The hard part is generally finding the region(s) {x : P ∗(x) > y}. This can be done using
a root-finding algorithm, or perhaps a stepping-out procedure. Even these are horrible to
implement in > 1 dimensions, so slice sampling is only usually used in 1D, or within Gibbs
sampling to sample from the 1D conditionals.

3Other numerical integration algorithms are available, but it does need to have particular (“symplectic”)
properties such as time-reversibility and volume preserving, which is not true of e.g. Euler or Runge-Kutta
integration.
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3 Bayesian Model Comparison

Suppose there are two models, A and B, which each attempt to describe the data D, with
parameters θA and θB. Now these models may take entirely different forms, so maybe dimθA 6=
dimθB. One might think that two models can be compared using the maximum likelihood
ratio:

MLR =
maxθA

L(D|A,θA)

maxθB
L(D|B,θB)

but because the different models may have different numbers of parameters, the one with more
parameters will naturally be a better fit, regardless of how “good” a model it is.

The Bayesian way to compare models is to calculate the posterior odds ratio:

OAB =
P (A|D)

P (B|D)
=
P (D|A)

P (D|B)

π(A)

π(B)
=

∫
P (D,θA|A) dθA∫
P (D,θB|B) dθB

· π(A)

π(B)

=

∫
P (D|A,θA) P (θA|A) dθA∫
P (D|B,θB) P (θB|B) dθB

· π(A)

π(B)

=

∫
L(D|A,θA) π(θA|A) dθA∫
L(D|B,θB) π(θB|B) dθB

· π(A)

π(B)
=
ZA(D)

ZB(D)
· π(A)

π(B)

which is thus the product of the evidence ratio (AKA Bayes factor) and the prior odds ratio.
This is nice, but in a Bayesian framework the prior odds ratio is not defined, but simply

whatever you think it is. If one has no reason to prefer one over another, it is set to 1. We
start with a quantitative prior belief of which model is better, and use the evidences for the
respective models to update that belief. Bayes!!

Furthermore, the priors π(θM |M) are also free choices. However, note that bad models
with many parameters will have smaller evidences4, giving rise to a built-in “Occam penalty”.

3.1 Computing the Evidence

The evidence is the crucial part of model comparison, so we outline some ways to calculate it
here. Our target is the integral

∫
L(D|θ) π(θ) dθ.

3.1.1 Analytic Evaluation

The evidence integral is rarely analytic, but sometimes is if one uses a conjugate prior.

3.1.2 Laplace’s Approximation

Laplace’s approximation approximates the integrand (the unnormalised posterior) as a Gaus-
sian. This approximation would eventually become very accurate in the limit of infinite data.

The Gaussian is approximated by finding the maximum-posterior value of the parameters,
θ̂ (perhaps numerically), and Taylor-expanding lnP (θ|D) about this point:

lnP (θ|D) ≈ lnP (θ̂|D)− 1

2

(
θ − θ̂

)ᵀ
C
(
θ − θ̂

)
, Cij = − ∂2 lnP (θ|D)

∂θi∂θj

∣∣∣∣
θ̂

4Although the maximum-likelihood will be better in a higher-dimensional parameter space, the evidence
involves integrating over the entire parameter space, which for an overfit model will contain vast regions where
the likelihood is tiny. A fewer-parameter model that fits the data just ok will peak lower, but broader, giving
a larger evidence integral.
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⇒ P (θ|D) ≈ P (θ̂|D) exp

[
−1

2

(
θ − θ̂

)ᵀ
C
(
θ − θ̂

)]
⇒ Z ≈ P (θ̂|D)

√
(2π)dimθ

‖C‖
where we use the standard integral of a multidimensional Gaussian. The components of the
(negative) Hessian could be calculated numerically or automatically.

The Gaussian approximation becomes bad if there are multiple peaks, but if they are well-
separated we can simply repeat the above integral at each peak and add them together.

Under a change of parameters θ → φ(θ), the evidence should be invariant. However, the
Laplace approximation is not. This is slightly awkward, but it can be used to our advantage:
by changing parameters, we might find a set of parameters in which the posterior is more
Gaussian, so in terms of these coordinates the approximation will be more accurate.

3.1.3 Thermodynamic Integration

The first step of thermodynamic integration is to anneal the likelihood function by taking it
to the power β ∈ [0, 1]. We then have L(D|θ, β) ≡ L(D|θ)β. This annealing has the effect of
smoothening out the likelihood function as β → 05. The analogy here is with thermodynamics,
where β = 1/kT . Thus high temperature corresponds to low β, where the likelihood melts out.

Bayes’ theorem including this new parameter β becomes:

P (θ|D, β) =
L(D|θ)βπ(θ)

Z(β)
; Z(β) ≡

∫
dθ L(D|θ)βπ(θ)

Note that β = 1 recovers the original case, whereas Z(0) =
∫

dθ π(θ) = 1.
Consider now the derivative d lnZ(β)/dβ :

d

dβ
lnZ(β) =

1

Z(β)

d

dβ

∫
dθ L(D|θ)βπ(θ)

=
1

Z(β)

∫
dθ L(D|θ)β lnL(D|θ)π(θ)

=

∫
dθ P (θ|D, β) lnL(D|θ) ≡ Eθ

[
lnL(D|θ)

∣∣∣ β]
This is the slightly weird expectation value of lnL(D|θ), over all possible values of the param-
eters, weighted by their posterior probabilities. For a given value of β, this can be estimated
using an MCMC chain, where at each point in the chain we evaluate lnL(D|xi), and once the
chain converges we take the average.

This gives us values of d lnZ(β)/dβ at various values of β. We can then numerically
integrate this, for example using the trapezium rule, giving:

lnZ =

∫ 1

0

Eθ

[
lnL(D|θ)

∣∣∣ β] dβ ≈ 1

2

n∑
j=1

(
Eθ

[
lnL(D|θ)

∣∣∣ βi]+ Eθ

[
lnL(D|θ)

∣∣∣ βi+1

])
∆βi

where in the first step we use Z(β = 0) = 1⇒ lnZ(β = 0) = 0, and Z(β = 1) = Z.
This method is practically quite difficult to implement, due to the large number of MCMC

chains that need to be run. Some time can be saved in the burn-ins by using the end of one
chain (with β = βi) as the start of the next chain (β = βi+1), as the two will have similar
stationary distributions.

5This would also make MCMC walkers less likely to get stuck in local minima, which is nice. One might
initially start with low β, allowing the walkers to explore the parameter space, before increasing it again to 1
and allowing the walkers to properly characterise the space.
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3.2 Computing Evidence Ratios

Recall that for Bayesian model comparison, we are actually only interested in the evidence
ratio between two models. There are a few tricks which avoid calculating the actual evidences
for each model, and skip straight to calculating the evidence ratio.

3.2.1 Savage-Dickey Method

The Savage-Dickey method can be used with two models where one is nested inside another,
that is, the parameter space of one is a subspace of that of the other. Let the parameters of
model B be θA = (ε,φ), and model A have the same parameters φ, but set ε = 0. We also
require the priors on the shared parameters to be “consistent”, that is, π(φ|A) = π(φ|ε = 0, B).
In this case, the evidence for the simpler model A is given by:

ZA ≡ P (D|A) =

∫
dφ L(D|A,φ)π(φ|A)

=

∫
dφ L(D|B,φ, ε = 0)π(φ|ε = 0, B)

= P (D|ε = 0, B)

=
P (ε = 0|D, B) P (D|B)

P (ε = 0|B)
=
P (ε = 0|D, B)

P (ε = 0|B)
ZB

where to get to the final line we use Bayes’ theorem. In this way, we can get the evidence ratio:

ZA
ZB

=
P (ε = 0|D, B)

P (ε = 0|B)

which depends only on the second model. More specifically, this is the ratio of the posterior
probability of ε being 0 to the prior probability of ε being 0, which is intuitive. If the prior
isn’t too bad, the denominator will be fine. The numerator, however, requires estimation using
MCMC.

3.2.2 Augmented Model Method

Suppose models A and B have parameters θA and θB. We then define an augmented model
C, with parameters θA, θB, and ε, which have priors and likelihood:

π(θA,θB, ε|C) = 11
0(ε) π(θA|A) π(θB|B)

L(D|θA,θB, ε;C) =

{
L(D|θA;A) ε < 1

2

L(D|θB;B) ε > 1
2

We then use MCMC to sample from the posterior of the augmented model; we show below
that the fractions of the samples on either side of ε = 1/2 give the evidence ratio. Consider
the fraction of the samples which will be on the side ε < 1/2. Assuming the MCMC chain has
converged, this will be equal to

P (ε < 1/2|D, C) =

∫ 1/2

0

dε

∫∫
dθA dθB P (θA,θB, ε|D;C)

11



=

∫ 1/2

0

dε

∫∫
dθA dθB

L(D|θA,θB, ε;C)π(θA,θB, ε|C)

ZC

=
1

ZC

∫ 1/2

0

dε

∫∫
dθA dθB L(D|θA;A)π(θA|A)π(θB|B)

=
1

2ZC

∫
dθA L(D|θA;A)π(θA|A)

=
ZA
2ZC

Similarly, the fraction of samples with ε > 1/2 will be ZB/2ZC . The evidence ratio ZA/ZB will
therefore be the fraction of samples with ε > 1/2 divided by the fraction with ε < 1/2. This
method can be extended to compare any number of models, though the high dimensionality
may lead to difficulties with the MCMC.

Sometimes, all of the samples may end up on one side of ε = 1/2. This is a bit of a problem,
but at least one can then put an upper/lower bound on the evidence ratio.

3.2.3 Importance Sampling

Suppose that models A and B have the same sets of parameters and priors π(θ|A) = π(θ|B).
In this case, we can calculate the evidence ratio as follows:

ZB ≡ P (D|B) =

∫
dθL(D|θ;B)π(D|B)

=

∫
dθ
L(D|θ;B)

L(D|θ;A)
L(D|θ;A)π(D|A)

=

∫
dθ
L(D|θ;B)

L(D|θ;A)
P (θ|D;A)ZA

⇒ ZB
ZA

=

∫
dθ
L(D|θ;B)

L(D|θ;A)
P (θ|D;A)

= Eθ

[
L(D|θ;B)

L(D|θ;B)

]
where θ ∼ P (θ|D;A) is distributed according to the posterior assuming model A. This can be
estimated using MCMC under model A.

In practice, the above methods aren’t used very often to calculate the evidence. Really,
everybody uses...

12



3.3 Nested Sampling

Nested sampling directly calculates the evidence Z, not a ratio between two models. It is
particularly good in high-dimensional parameter spaces, and for non-Gaussian or multimodal
posteriors. It also produces stochastic samples, like an MCMC method. We will thus revert to
describing the parameters θ by a sample vector x in the sample space X .

3.3.1 Theory

Let L correspond to a particular value of the likelihood. Consider the subspace Y(L) ⊆ X
where all the samples x ∈ X have a likelihood greater than L:

Y(L) = {x ∈ X : L(D|x) > L}

So that Y(L = 0) = X ; if we let L∗ = maxθ L(D|θ) be the maximum likelihood value over the
parameter space, then Y(L = L∗) = ∅. Y may be several disjoint regions of the sample space
if the likelihood surface has an mountainous topography.

We now define ξ(L) to be the prior probability that L > L, in other words the integral of
the prior over Y(L):

ξ(L) ≡
∫
Y(L)

π(x) dx =

∫
{x:L(D|x)>L}

π(x) dx =

∫
L>L

π(x) dx

such that ξ(0) = 1 and ξ(L∗) = 0. Now from the definition of ξ(L), it must be monotonically
decreasing, and hence invertible to L(ξ) on the range L ∈ [0,L∗].

In many dimensions, only a very small fraction of the parameter space has a likelihood
which is anywhere near L∗. Consider the region where ξ(L) is close to 0, i.e where L is close to
L∗. This is an elite, select region, where only the parameters with the very highest likelihoods
are included. Even if we increase ξ only slightly, to do so would be to include a lot more of the
parameter space with more modest values of the likelihood; L thus needs to decrease by quite
a lot to bring about a small increase in ξ from 0. Thus the graph of L(ξ) against ξ peaks very
strongly near ξ & 0, before intersecting the axis at L(ξ = 0) = L∗.

How does any of this relate to the evidence? Consider the iso-likelihood surfaces in X .
These will also be iso-ξ surfaces, since ξ(L) is invertible. Consider then the infinitesimal region
dY in between two iso-surfaces, where L takes values in between L and L + dL, and ξ is
between ξ(L) and ξ + dξ = ξ(L + dL). In dY , the total prior probability is dξ =

∫
dY π(x) dx,

recalling that ξ is the integral of the prior over some region. Also, the likelihood in this
region is approximately L, by definition. thus the contribution of this region to the evidence,
which recall is Z =

∫
Lπ dx =

∫
Ldξ, is therefore dZ = L dξ, because in dY the likelihood

is approximately L. Therefore, to calculate the total evidence Z, we simply integrate L(ξ) dξ
over all possible values of ξ, i.e. from 0 to 1. We thus have:

Z =

∫ 1

0

L(ξ) dξ

We have thus converted the high-dimensional integral to a one-dimensional integral, at the cost
of having to find and invert ξ(L). This is tackled by the nested sampling algorithm, outlined
below.
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3.3.2 Algorithm

A large number Nlive ∼ 103-104 of “live points” are drawn from the prior distribution: xj ∼ π,
for j = 1, 2, ..., Nlive. The likelihood is then evaluated at all of these points Lj = L(D|xj),
and whichever point x† has the lowest value of the likelihood L† = minj Lj is “killed”. That
point is then replaced by a new point, which is drawn from the prior subject to having a larger
likelihood than the point which was just killed:

x† ← x ∼ π
(
x
∣∣∣L(D|x) > L†

)
In this way, the live points gradually crowd in towards the maximum (or maxima) of the
likelihood function.

At each step i, the dead likelihood L†i is recorded, forming an increasing sequence: L†i >
L†i−1. We also estimate the associated values of ξ†i , which form a decreasing sequence; this is
done probabilistically as follows. Because the surviving points have been sampled according
to the prior, the distribution of their values of ξj will be uniformly distributed from 0 to ξ†i .

Therefore, after every death, the next largest ξj – that is, max {ξj} = ξ†i+1, the point which

will die at the next step – will only be a fraction t ∈ [0, 1] of ξ†i , where t is a random variable
following the distribution of the largest of Nlive random variables ∼ U(0, 1). Clearly if Nlive

is very large, then t will be only slightly below 1; in more detail, how is t distributed? Let
t = max {τi}, where each τ ∼ U(0, 1). The probability that t is less than some value T is the
probability that all of the τi are less than T , that is, P (t < T ) = TNlive . Differentiating, we
find P (t) = Nlivet

Nlive−1. From this, we can find that E[ln t] = −1/Nlive, and thus approximate
that at each iteration ξ†i decreases by a factor of exp(−1/Nlive). Thus ξ†i ≈ exp(−i/Nlive).

In this way, the dead points give us lots of values of Li (the L†i ) and corresponding values
of ξi (the ξ†i ), as ξi works its way down from 1 to 0. We can use these values to estimate the

evidence integral, Z =
∫ 1

0
L dξ, using the trapezium rule. In fact, we typically integrate “as we

go”, so we start with (ξ0, L0) = (1, 0) and work our way down in ξ. We therefore have:

Z ≈
M−1∑
i=0

1

2
(Li + Li+1)(ξi+1 − ξi) =

M∑
i=1

wiLi; wi ≡
1

2
(ξi−1 − ξi+1)

where we do some summation magic to convert to a simpler weighted sum over the Li, with
the weights defined as shown6.

When should the sequence be terminated? One usually estimates the evidence contribution
from the remaining live points at likelihoods Lj to be ∆Z ≈ ξi ·maxLj. When this drops below
some small tolerance value, we say that the integral has approximately converged.

Apparently, the killed points also x†i form a set of stochastic samples from the posterior
distribution, albeit weighted by wiLi.

6Note that for the summation to work, and not have any leftover edge terms, we need to set ξM+1 = ξM .
We’re only running it for M iterations though, so ξM+1 doesn’t really exist.
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4 Hierarchical Bayesian Models (HBMs)

Bayes’ Theorem often deals with conditional probabilities P (X|Y ). These probabilities can be
chained together if Y itself depends on other quantities, a and b, say. Such multi-layer models
constitute HBMs.

These are often displayed as probabilistic graphical models (PGMs): diagrams showing the
conditional flow of a HBM. In these diagrams, unknown quantities are shown in circles, with an
arrow towards the dependent quantity. Circles representing data are shaded; unknown random
variables (whether parameters, or latent/nuisance parameters) are empty. Known parameters,
if displayed at all, are represented as points. For example, the likelihood function L(t|τ, σ = 1)
would be represented by the following PGM:

τ t

σ

Suppose now that we have a prior on τ : it depends on the (fixed) parameters µ and Σ. The
diagram would then become:

τ t

σ

µ

Σ

The point of these diagrams is that they allow us to follow the Bayesian flow when we are
writing down quantities like the evidence, which the above diagram would help us to write as:

Z =

∫
L(t|τ, σ) π(τ |µ,Σ) dτ

Suppose now that µ and Σ are now random variables, with hyperpriors that depend on µ1,
µ2, and Σ1, Σ2. Suppose also that there are a large number N of different random variables τi,
on each of which the quantity ti depends. The diagram would then be shown as:

τi ti

σ

µ

Σ
Σ1

Σ2

µ1

µ2

i = 1, 2, ..., N

This is a truly hierarchical Bayesian model, as it assumes that each of the τi depends on
the same parameters µ and Σ one level below.
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5 Gaussian Processes

For a real function f(x), and some data (xi, f i), Gaussian processes (GPs) allow one to both
interpolate and extrapolate beyond the xi.

Consider a space S, which could be Rd, but could be any space, even a torus or something.
A GP on S is a collection of random variables such that for any collection of points {xi ∈ S}
in this space, the vector

f = (f(x1), f(x2), . . . , f(xN)) ∈ RN

is a random variable distributed as a multivariate Gaussian. This is denoted f ∼ GP(µ, k), for
mean and kernel functions µ : S → R and k : S ×S → R. When designing a Gaussian process,
we take a set of points x, choose a kernel function, and calculate the mean and covariance of the
distribution: the i-component of the mean of f in this distribution is given by µ(xi); the i, j-
component of the covariance matrix is k(xi,xj) (the function k therefore must be symmetric).
Then, by drawing random samples y ∼ N (µ,Σ) from the multivariate distrbution, we obtain
points of a function which has effectively been drawn from the Gaussian process.

The mean function is essentially arbitrary, but the kernel must be positive-definite, for the
same reason that a multivariate Gaussian distribution must have a positive-definite covariance
matrix. This significantly limits the types of functions eligible to be kernel functions, as to
qualify they have to produce positive-definite covariance matrices for any set of N points in
the space. A few common ones are discussed below.

5.1 Examples of Kernel Functions

5.1.1 Linear Kernel

The linear kernel is kL(x, x′) = xx′, and is positive semi-definite. To show this, note that the
covariance matrix produced by the linear kernel is Σ = xxᵀ. Multiplying this matrix by the
vector x gives Σx = xxᵀx = |x|2x, so x is an eigenvalue of Σ, with eigenvalue |x|2 > 0. All
other eigenvectors of this matrix yi will be perpendicular to x, and because Σyi = xxᵀy = x(0),
their eigenvalues are all 0. Thus Σ’s eigenvalues are |x|2, and 0, so Σ is positive semi-definite.

Functions from the (zero-mean) Gaussian process with a linear kernel are always lines of
constant gradient. To show this, let x sample the x-axis (perhaps xk = kδ for some small value
of δ). The samples from the resulting multivariate Gaussian are y ∼ N (0,xxᵀ). Consider now
z = ax, where a ∼ N (0, 1); we now show that the ys thus drawn follow the same distribution.
The mean of the distribution of zi in this latter case is E[zi] = E[a]xi = 0; the covariance of
zi and yj is cov[yi, yj] = cov[axi, axj] = E[a2]xixj = xixj = Σij. Thus z and y follow the
same distribution, so y = ax, where a ∼ N (0, 1). All of the draws y from the multivariate
distribution of a GP with a linear kernel will therefore be multiples of the vectors x that are
input to the GP, and therefore a plot of y against x will be linear.

5.1.2 Brownian Motion Kernel

The Brownian motion kernel is kBM(x, x′) = min(x, x′), and so called because it produces
samples with continuous-undifferentiable-looking forms. To show that this kernel is positive
semi-definite, we rewrite the kernel as:

kBM(x, x′) =

∫ ∞
0

dt [1−H(x− t)][1−H(x′ − t)]
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where H(t;x) is the Heaviside step function: the integrand will only be positive where both
x < t and x′ < t, i.e. only where min(x, x′) < t; the integral is then 1 between 0 and min(x, x′),
giving min(x, x′) as a result; this integral is thus equivalent to the Brownian motion kernel.
We then pre- and post-multiply the resultant covariance matrix with a general vector z, and
show that the resulting scalar is always non-negative:

zᵀΣz =

∫ ∞
0

dt [1−H(xi − t)][1−H(xj − t)]zi, zj =

∫ ∞
0

dt [zi(1−H(xi − t))]2 ≥ 0

Thus the Brownian motion kernel is positive semi-definite.

5.1.3 Squared Exponential Kernel

The squared exponential kernel is the most popular kernel function, with realisations from the
resulting distributions being nice and smooth. The kernel is given by:

kSE(x,x′) = exp

[
−1

2

∣∣∣∣x− x′

`

∣∣∣∣2
]

where ` is a length scale hyperparameter, controlling the scale of the wiggles in the draws from
the distribution.

kSE is an example of a stationary kernel, which are those that depend only on X = x− x′.
For such functions, it is generally easier to tell whether they are valid kernel functions by
considering their Fourier transform k̃(ω):

zᵀΣz = Σijzizj =

∫
dω k̃(ω) exp

(
−iω · (xi − x′j)

)
zizj =

∫
dω k̃(ω)|zi exp(−iω · xi)|2

Thus zᵀΣz ≥ 0, and the kernel function is positive semi-definite, if the Fourier transform
k̃(ω) ≥ 0. For the case of kSE, the Fourier transform of a Gaussian is another Gaussian, which
is positive, and so the squared-exponential kernel is positive-definite.

5.1.4 Periodic Kernel

If we want to generate periodic functions, then we can use a periodic kernel. This has the form:

kP (x,x′) = exp

[
−2 sin2 (π|x− x′|/T )

`2

]
with hyperparameters ` and also T , which governs the period of the oscillations in the resulting
functions.

5.1.5 Constructing New Kernel Functions

It is generally difficult to tell whether a given function constitutes a valid kernel function.
However, valid kernels can be combined in various ways to form new kernels which are also
valid:

• Adding or multiplying valid kernels gives a valid kernel.

• For a valid kernel k(x,x′), the function α(x)α(x′)k(x,x′) is also a valid kernel.

• Given a kernel function k : S × S → R, and another function U : S ′ → S, and vectors
x,x′ ∈ S ′ the “warped” function k(U(x), U(x′)) is a valid kernel function.
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5.2 Gaussian Process Regression

Suppose there are some values of x (x†i , say) at which we know the values of f(x†i ), and some
values of x (x∗i , say) at which we want to interpolate/extrapolate the function. We can do
this by concatenating the points x = (x†,x∗), constructing a Gaussian process based on these
points, and then conditioning the resulting multivariate distribution on the known values of f .
We can then obtain estimates and errors on f(x∗i ).

The engine of this is the fact that a multivariate Gaussian distribution conditioned on
certain variables taking any particular values is itself a (multivariate) Gaussian distribution.
Imagine slicing a 2D Gaussian perpendicular to one of the axes: the cross-section will too be
a Gaussian, no matter where the slice is.

In particular, it turns out that if x ∼ N (µ,Σ), where the mean vector is broken up into
µ =

(
µ∗,µ†

)
and similarly the symmetric covariance matrix

Σ =

(
Σ∗

[
Σ∗†
]ᵀ

Σ∗† Σ†

)
,

then the conditional distribution x∗|x† ∼ N (µ′,Σ′), where

µ′ = µ∗ +
[
Σ∗†
]ᵀ[

Σ†
]−1(

x† − µ†
)

Σ′ = Σ∗ −
[
Σ∗†
]ᵀ[

Σ†
]−1

Σ∗†

Suppose we want to interpolate the value of a 1-dimensional function f at a single point,
x∗, knowing the values of f at a selection of points x† = (x†i ). Taking the function to have a
Gaussian process prior with zero mean function and kernel function k, we therefore have that
the vector containing the function values at x∗ and the x†i is:(

f(x∗), f(x†)
)
∼ N

(
0,

(
Σ∗∗

[
Σ∗†
]ᵀ

Σ∗† Σ†

))
;

Σ∗∗ = k(x∗, x∗); Σ∗†i = k(x∗, x†i ); Σ†ij = k(x†i , x
†
j)

With this, and the above formulae for the conditional multivariate distribution, f(x∗)|f(x†)
follows a univariate normal distribution with mean and variance given by:

E[f(x∗)] =
[
Σ∗†
]ᵀ[

Σ†
]−1

x†

V[f(x∗)] = k(x∗, x∗)−
[
Σ∗†
]ᵀ[

Σ†
]−1

Σ∗†

Note that, as with everything in Bayesian analysis, this depends on the choice of k: that is,
our priors on the form of f .

5.3 Pros and Cons of Gaussian Processes

Gaussian processes have many advantages. Crucially, it enables inclusion of prior information
about the function, such as periodicity and smoothness. Functions can be arbitrarily compli-
cated without overfitting. And errors on the interpolated function values can be calculated.
Finally, S doesn’t have to be the real line: the above can be equally applied to spaces with
bizarre topologies.

The main disadvantage is computational scaling. For N known data points x†, we must
calculate the kernel matrix Σ†, and then its inverse, which takes O(N3). Sometimes direct
inversion of the kernel matrix is avoided by calculating its Cholesky decomposition, in terms of
the product of a lower-triangular matrix and its transpose.
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