
Applications of Data Science

Xander Byrne

Michaelmas 2023

1 Learning from Data

Data science is about learning a model from data. In order to do this, the data must accurately
represent the real world. The data must therefore be:

• Accurate: the data should reflect what is observed, and systematics should be absent

• Complete: the data should include data from all relevant classes, and across a wide
range of parameter space;

• Time-invariant: otherwise our models will quickly fall out of date

When creating a model from data, there are three things one should do:

1.1 Inspect the Data Structure

• Quantitative/Qualitative: e.g. height, or country of birth

• Continuous/Categorical: e.g. weight, or birthday

• Range: If quantitative, what are the feature’s maximum and minimum values? If cate-
gorical, how many categories can the feature be in?

1.2 Preprocess the Data

Data may be in an awkward form and need to be “cleaned” before it can be modelled.

• Missing Data: A datum may have missing features, perhaps even being unlabelled.

• Redundance: Features may be co-dependent and hence redundant. Some data instances
may be repeated.

Data can be awkward in less boring ways that might also make it difficult for modelling.

1

1.2.1 Qualitative Features

Many types of models are based on numbers, so how might one encode a qualitative class, e.g.
birth country? It makes no sense to assign, for example, Afghanistan → 1, Albania → 2 etc.,
as this implies some form of quantitative ordering which is meaningless. There is no reason
to assign instances with this feature being Afghanistan as “closer” to those with Albania than
to those with Zimbabwe. A better approach is one-hot encoding, where rather than assigning
a qualitative feature an integer from 1 to C, we instead assign a C-dimensional vector whose
entries are all 0 except for one. We would thus assign Afghanistan → (1, 0, 0, ...), Albania
→ (0, 1, 0, ...) such that all the classes are equidistant.

1.2.2 Heterogeneous Ranges

If the range of some feature is orders of magnitude larger than others, the construction of a
model may over-focus on this feature. To avoid this, we need to somehow standardise this
feature; there are several ways of achieving this.

We could rescale all features to the range [0, 1] by subtracting the minimum and dividing
by the range. This has the advantage that the distribution shape of that feature is unchanged.
However, if that feature has outliers then they will be at 0/1 and the rest of the features will be
smushed together at the other end. Sometimes this is mitigated by taking a log2 transformation
first (though this will alter the feature distribution shape), or by introducing a cutoff for that
feature (though this may be removing important information)

An alternative is to make a Z-transformation, taking the mean µ and standard deviation
σ of that feature, and assigning each datum a feature Zi = (xi − µ)/σ, where xi was the value
of the original feature. This handles small numbers of outliers well: they won’t affect µ much,
though they will affect σ, causing to the Z distribution to be narrower. A disadvantage is that
if this transformation is applied to every feature, any information on the relative variances/sizes
of the features is lost.

A variation on the Z-transformation uses the median absolute deviation (MAD), given by:

MAD = median
[∣∣xi −median[xi]

∣∣] ⇒ Zm ≡
xi −median[xi]

MAD

This transformation is more robust to outliers.

1.2.3 Near-Zero Variance

If every datum has the same value for one feature, it is hardly a feature. Features with near-zero
variance can be excluded.

1.3 Ensure Robustness

Once the model has been created, we must ensure that it is robust : that it can perform well
on new/unseen data. If not, it is likely that the model is overfit on the data it was trained on.
To test this, we need an independent dataset on which to evaluate the model’s generalisability.

This can be achieved by splitting the available data into a training set and a test set ; often
this is done in a 90:10 or 95:5 ratio. One then trains the model on the training set, evaluates
it on the test set, and optimises the model parameters based on how it performs on the test.

2

A problem with this is that the model may then overfit on the test set instead. A way
of escaping this information leaking is to create a third set in between: the validation set,
with a split of perhaps 80:10:10. The model is trained on the training set, optimised based on
performance on the validation set, and then evaluated on the test set, which was completely
unused in training.

A disadvantage is the reduced amount of data we can train the model on. This may be
mitigated by cross-validation, where at each training stage the training and validation sets are
re-partitioned, allowing all of the data to be used at some point to train the data. For example,
k-fold cross-validation, where the dataset is partitioned into k equal “folds” of size N/k; at
each training iteration, one fold is selected as the validation set, the model is trained on the
rest of the data, and then evaluated on this validation fold. At the next iteration, a different
fold is selected.

A common issue with validation splitting, as well as data collection in general, is the balance
of the data. Do members of one class contribute 90% of the data? In which case, a model
would achieve a 90% success rate just by guessing this class every time! This can be mitigated
by downsampling, where overrepresented entries are removed from the training data, though
this can remove useful generalisable features. The opposite approach is upweighting, where
underrepresented entries are artificially replicated in the training data (perhaps with some
variation), though this might result in an artificially lower variance for that class.

1.3.1 Evaluating Models

For supervised learning tasks, where the output of the model for each datum is known, one can
create a confusion matrix, containing the true positives (TP) which were correctly classified
as “positive”1, true negatives (TN) which were correctly classified as “negative”2, and false
negatives and false positives off the diagonal. There are loads of other metrics which can be
used to evaluate models depending on what one wants to optimise, such as the false discovery
rate, or negative predictive value.

1.3.2 Bias-Variance Trade-Off

A model’s bias is, vaguely speaking, errors on the test set. A model’s variance is its sensitivity
to small fluctuations, as learned from the training set. Bias is due to having learned insuffi-
ciently completely, such as by underfitting the training set. Variance is a result of modelling
random noise in the training set, i.e. overfitting.

These two are usually in conflict, and it is usually impossible to get both down to a low
level: this is the bias-variance trade-off. One must make a political decision as to how much
of each is permissible.

1This might be successful classification in a particular class
2which might be successful classification in another class

3

2 Supervised Learning

2.1 Linear Regression

Regression is a continuous-output problem; the features can be of any kind but are usually
continuous (if not they can be one-hot encoded). Linear regression assumes a natural law
Y = β0 + β1X + ε (for one feature and one target variable), and attempts to find the best
estimates (β̂0, β̂1) for the real coefficients (β0, β1). It can answer the the following questions:

• Is there a linear relationship between any features and the target variable(s)?

• If so, how strong are these relationships?

• Which feature explains the target best?

• How accurately can we predict the target variable?

One might implement a linear regression by minimising the residual sum of squares

RSS =
N∑
i

(yi − ŷi)2 =
N∑
i

(
yi − β̂0 − β̂1xi

)2
Minimising the RSS with respect to β̂0 and β̂1 turns out to give the following estimates:

β̂1 =

∑N
i (yi − ȳ)(xi − x̄)∑N

i (xi − x̄)2
β̂0 = ȳ − β̂1x̄

There are various ways of evaluating a regression. One way is to calculate a t-statistic
(effectively a signal-to-noise ratio on β̂1), and a p-value giving the probability of obtaining a
test statistic ≥ |t|: a low p-value signifies a strong correlation. Another test statistic is the
coefficient of determination R2, which quantifies the fraction of variability in the data that a
given linear model predicts. It is given by

R2 = corr[x, y]2 =
[
∑

(xi − x̄)(yi − ȳ)]2∑
(xi − x̄)2

∑
(yi − ȳ)2

∈ [0, 1]

R2 ≈ 0 means that a linear model is bad; R2 ≈ 1 means it explains most of the data variability.
Other metrics include the mean absolute error (or L1 loss): MAE = 1

N

∑
|yi − ŷi|, and

the mean square error (L2): MSE = 1
N

∑
(yi − ŷi)2. L2 is less robust to outliers, amplifying

quadratically the influence of data that are away from a linear fit. However, L1 is less stable
to noise than L2, which reacts more smoothly. The Huber loss combines the two, as an L2 loss
for small residuals and an L1 for larger residuals.

2.1.1 Multiple Regression

When using multiple features to predict a target variable, some features may be more useful
than others. There are 2F subsets of features (for F features), so an “all subsets regression”
may be impractical for F & 25.

One option is forward selection:

1. Begin with the null model: ŷi = β̂0

4

2. Using linear regression, fit all F features individually: yi = β̂0 + β̂fxif , where xif is the
fth feature of datum xi.

3. Choose the feature with the lowest RSS, and incorporate that into the working model

4. Fit all remaining F −1 features on top of that (allowing the first feature to vary), finding
the best (lowest RSS) two-variable model

5. Continue until e.g. adding any of the remaining features would have a minimal improve-
ment on the model

Another option is backward selection, which is essentially the reverse: we start by fitting all of
the features together, then repeatedly prune the one with the least significance. An intermedi-
ate method to alleviate the greediness of forward selection (whereby a better solution may be
found by not necessarily doing whatever is the best step straight away) is called mixed selec-
tion: we begin by forward selection, but if one of the features already incorporated becomes
insignificant it is removed in a backward selection step.

2.1.2 Regularisation

Sometimes a regression may lead to some parameter estimates being enormous, cancelling each
other out somewhat in order to give a good fit but giving a weird and complex model. To
mitigate against this and get simpler models, regularisation can be employed to penalise large
parameters. For example, rather than minimising the RSS, we might instead minimise:

RSS + λ
∑
f

β̂f
2

where λ is a regularisation hyperparameter which must be chosen.

2.1.3 Simpson’s Paradox

A word of warning about doing linear regression on data with inherent substrata. A linear
trend may appear in an overall dataset, but then disappear or even reverse when the groups
are examined individually. It is therefore crucial to inspect the dataset beforehand to identify
any groupings.

2.2 Classification

Classification problems involve data where each datum is a member of a particular class Cκ,
where κ runs from 1 to K. Modelling can either be discriminative or generative. Discriminative
models simply attempt to calculate the conditional probabilities p(Cκ|x) that a given datum
belongs to the classes. Generative models attempt to model the process behind the data,
finding a way one might generate data from a given class, i.e. looking for p(x|Cκ).

2.2.1 Discriminative Models

Discriminative models divide the data space into disjoint decision regions separated by decision
boundaries, thus assigning each possible datum to a specific class. They are simpler, more
interpretable, and computationally cheaper, but usually need lots of training data to generalise.

5

These models are often realised using discriminant functions. For a two-class problem, we
might use a discriminant function:

y(x) = φ(wᵀx + w0)

(where φ is an activation function) and that if y ≥ 0 then x is assigned to class C0 and otherwise
class C1. Here, the decision boundary y = 0 corresponds to a (F − 1)-dimensional hyperplane
in the data space: wᵀx + w0 = φ−1(0) = const.

To find the optimal decision boundary for a two-class problem, one could assign 0/1 labels
and use linear regression, but this would make lots of ambiguous classifications between 0 and
1, and extrapolate to −1 or 2, and beyond. A better way forward is logistic regression, which
rather than fitting a function of the form y = β0 + β1x fits the logistic function3:

p(x; βi) =
eβ0+β1x

1 + eβ0+β1x
⇒ ln

(
p(x)

1− p(x)

)
= β0 + β1x

where the function p(x) is then interpretable as the probability that the datum x lies in class
C1 and not C0. The coefficients β0 and β1 must be estimated from the data, for instance by
maximising the following likelihood function with respect to the βi:

L(β0, β1) =
∏
xi∈C0

[1− p(xi; βi)]
∏
xi∈C1

p(xi; βi)

– the product of the successful evaluation probabilities of the C0 and C1 data.
For a larger number of classes K > 2, we can choose one class (wlog, K) as a baseline:

p(Cκ<K |x) =
eβκ0+βκ1x

1 +
∑K−1

k=1 e
βk0+βk1x

p(CK |x) =
1

1 +
∑K−1

k=1 e
βk0+βk1x

2.2.2 Generative Models

Generative models model the production of data in each of the classes, i.e. what went on under
the hood to create the data, the p(x|Cκ). One then estimates the probabilities p(Cκ|x) that a
datum x is in class Cκ using Bayes’ Theorem: if a generative model says that a given class Cκ
has a probability density function fκ(x), and the prior probability of a datum being from class
κ is4 πκ, then we would give our final class probabilities as

p(Cκ|x) =
πκfκ(x)∑K
k πkfk(x)

For example, linear discriminant analysis (LDA) (a) is used where the data x only have one
feature, (b) assumes that the generative distributions fκ are Gaussians about means µκ, and
(c) assumes that these Gaussians all have the same variances σ2. This gives:

ln p(Cκ|x) = [const. in κ] + ln πκ −
µ2
κ

2σ2
+
µk
σ2
x

3This shows the logistic function for one feature but generalises naturally for F > 1.
4For example, we might estimate πκ = Nκ/N , where Nκ is the number of training instances in class Cκ

6

We then assign x to the class Cκ with the largest ln p(Cκ|x) (which is why we don’t care about
the leading constant). For a two-class problem (κ ∈ {0, 1}), we would hence assign x to be in
class 0 provided

(µ0 − µ1)

(
x− µ0 + µ1

2

)
> 2σ2 ln

(
π1
π0

)
which is eminently interpretable: for example we are less likely to assign things to class 0 if
π1 � π0, as then the RHS will be larger. With a uniform prior π0 = π1, we assign to whichever
side x is of 1

2
(µ0 + µ1), which makes sense.

LDA is extendable to multifeature data, by assuming multivariate Gaussians for fκ(x).

2.3 k-Nearest Neighbours (kNN)

kNN can be used for both classification and regression, and can handle categorical and contin-
uous data (though usually continuous).

To classify using kNN, the idea is the following. For each new datum, if we want to classify
it, let the k nearest neighbours vote on the classification.

We first need to define “nearest”. One option is the Euclidean distance, though clearly
this is inappropriate if one feature has much more variation than others, in which case this
feature will be the most important in classification. One could overcome this by standardisation
preprocessing, or alternatively by a different choice of distance formula (e.g. Manhatten).

k is a hyperparameter which requires optimisation. For k = 1, the nearest neighbour has
all the say, which gives the noise too much influence (overfitting). This can create “islands of
influence”, where regions around exclave outliers get misclassified. For k = N , every datum
will simply be assigned to the largest class (underfitting). k ought to be somewhere in between,
as clearly it can influence the classification of points.

Another issue is that ties may emerge, depending on k. This can be overcome by applying
a weighting factor: nearer neighbours’ votes count for more, by say 1/d2. This needs to be
finely tuned however, to avoid effectively a k = 1 situation.

To regress, one can look at the k nearest neighbours and take a (perhaps weighted) average.

2.4 Support Vector Machines (SVMs)

SVMs are based on Maximum Margin Classifiers, which seek a maximal margin hyperplane,
which maximises the perpendicular distance in data space between the hyperplane and the
nearest data instances of either group, which are the support vectors. Data which are not
support vectors have no effect on the position of the hyperplane. This process requires the data
to be linearly separable, otherwise misclassification is unavoidable. If not linearly separable,
one might either allow this at a cost (which would be a support vector classifier), or apply
a nonlinear kernel to project the data into a higher dimension in which the data are linearly
separable. These kernels might be polynomials, the radial basis function, etc.; choosing the
right one necessitates looking at the data first.

2.5 Decision Trees

Decision trees segment the feature space into disjoint hyperrectangles. New data instances can
be classified according to the most common class in their region, or regressed using the average
value in their region. They don’t require any feature standardisation beforehand, and have the

7

advantage of allowing a mixture of categorical and continuous features. They are also readily
interpretable, and seem to work more like how humans think. However, they are not very
robust to small changes in the input data, and other methods are usually better at prediction.

A decision tree is conceptually created as follows:

1. Look at every feature, and decide both which feature is best to split on and where would
be the best place to split it.

2. Create a “branch” at that split, dividing the data space into two regions.

3. Look at all of the remaining features. Repeat.

4. Finish when a given stopping rule is satisfied.

2.5.1 Choosing a Split

The general goal for a split is to increase the homogeneity of the sub-regions of data space, so
we’d like a split to maximise that.

For a continuous target variable, we have a regression tree. For a given split, the prediction
in each sub-region ŷr is simply the mean of all the members of that region. We can then derive
a loss function based on the RSS error of that region, and sum over all the regions:

RSS =
∑
r

∑
xi∈r

(ŷr − yi)2

For a categorical target (classification tree), each datum is the member of a class Cκ. There
are several options for the splitting criteria. Consider a region r: let the fraction of data in
region r that are in class κ be prκ. The Gini impurity of this region is given by:

Gr =
K∑
κ

prκ(1− prκ) = 1−
K∑
κ

p2rκ

where the sum runs over all classes. The ideal situation is for one of the prκ to be 1, the rest
to be 0, and hence Gr to be 0; if randomly classified we expect prκ = 1/K ∀κ, r and hence
Gr = 1− 1/K. The overall Gini score for a particular split is the weighted average of the two
new regions r and s:

G =
Nr

N
Gr +

Ns

N
Gs

where Nr is the number of data in region r etc. We would thus choose the split which minimises
G. Another loss function is the classification error Er = 1−maxκprκ, which in an ideal scenario
would also be 0; a random classifier would also give Er = 1 − 1/K. The total score for each
split is calculated in the same weighted average way. Yet another is the entropy :

Hr = −
K∑
κ

prκ log2 prκ

Again the ideal is 0 but now the worst-case is log2K. The choice of loss function is somewhat
political, but generally we would prefer a partition to cause prκ = 0.8→ 0.9 than prκ = 0.5→
0.6, because of how our brains think about purity. In this respect, the Gini impurity and the
entropy are superior to the classification error.

8

2.5.2 Stopping Rules

Small trees underfit the data; large trees overfit it; there’s a bias-variance trade-off as always.
The intuitive stopping rule is to stop growing the tree when the improvement (in RSS, or Gini,
etc.) is below some threshold. However, because this algorithm is greedy, a bad split might be
followed by a really good one.

A solution to this is pruning. Pruning involves growing a very large tree before pruning
some of the branches. Starting with a large tree T0, we gradually remove branches to minimise:

|T |∑
r

∑
xi∈r

(ŷr − yi)2 + α|T |

(or the equivalent with e.g. a Gini index leading), where |T | is the number of leaves of the tree
= number of regions the data space is split into, and α is a complexity hyperparameter.

T0 may have a large number of subtrees, making computation hard. A solution is to start
with α = 0 (in which the optimal tree is by definition T0) and gradually increase it; as α gets
very large eventually the tree will only have a single leaf and there will be no splits. One can
choose an α by applying each of these intermediate pruned trees to some validation data (or
using cross-validation), and seeing which gives the lowest error (i.e. which generalises the best).

2.5.3 Ensemble Methods

A single decision tree is usually quite bad, but combining many decision trees together can be
incredibly powerful. There are several ways of combining trees.

Bagging (bootstrap aggregating) consists of training a series of decision trees on bootstraps
of the original dataset (samples from the original datasets taken with replacement). The data
not used in a particular bootstrap (out-of-bag data) can be used as a validation set, e.g. for
pruning as above. For regression, one can then take the average of the predictions of the
ensemble of trees. For classification, one can let the trees vote.

Random Forests use a similar procedure to bagging, training on bootstrap samples, but
with a restriction. In training the trees, at each branching stage the split is only allowed to be
on a subset of the features. For F features, one might only be permitted to split on f ≈

√
F of

them. This forces some trees to look at features that they otherwise wouldn’t, and generates
a diverse forest which is less likely to become stuck in local optima.

Boosting uses a sequence of trees to predict the error of the previous tree. The first tree
predicts the target variable ŷ1 for each datum. The second tree predicts the residual r̂1 = y− ŷ1
(often by minimising the MSE), at which point the prediction becomes ŷ2 = ŷ1 + λr̂1, where λ
is a small (∼ 0.01) “shrinkage” parameter. After B trees, the overall prediction is then:

ŷB = ŷ1 + λ
B−1∑
b=1

r̂b

This has been extended to great effect in classifiers such as AdaBoost and XGBoost.
An issue with ensemble methods is the loss of immediate interpretability. We can however

calculate the importance of each feature across the whole ensemble, e.g. the average amount
that the loss improves as a result of splits on that feature.

9

3 Unsupervised Learning

Sometimes we don’t have labels for our data, and the best we can do is group together similar-
looking data points.

3.1 Dimensionality Reduction

One way of grouping together data with many features is to perform a dimensionality reduc-
tion: projecting the data points into a lower-dimensional space while preserving any clustering
inherent in the data space. That is, preserving as well as possible the (relative) pairwise dis-
tances of all the data points. This is not possible to do exactly in general: in 3D the four
vertices of a tetrahedron are equidistant to all the others, but good luck trying to get four
equidistant points in 2D; hence the “as well as possible”. Dimensionality reduction exploits
the common phenomenon that data rarely occupy every corner of the data space: data usually
exist near a submanifold of the data space, as features often have complicated interrelations.

3.1.1 Principal Component Analysis (PCA)

Principal components (PCs) are orthonormal vectors: the mth PC is along a line which best
fits the data while being perpendicular to the first m − 1 PCs. Another way of describing
this is to find a line where, when all the data are projected along this line, there is the largest
variance of distances along the line. If we choose the vector w as the first PC, the projection
of data point xi along the line w is w · xi, so the variance which we seek to maximise is given
by V [w · x]. Now E[w · x] = w · x̄, so

V [w · x] =
1

N

∑
i

(w · xi −w · x̄)2 =
1

N

∑
i

[w · (xi − x̄)]2 = wᵀQw

where Qjk = 1
N

∑
i (xij − x̄j)(xik − x̄k) is (proportional to) the covariance matrix of the data

xi. Being a quadratic form, extremising this variance is equivalent to finding the eigenvectors
of the quadratic matrix. The first PC is then the eigenvector with the largest eigenvalue.
Subsequent PCs are eigenvectors with successively smaller eigenvalues. Q is a positive semi-
definite matrix, so its eigenvalues are all at least 0, and are only 0 if there is a direction in data
space where no data lie, i.e. the data points all lie exactly on a hyperplane in the data space.

One can plot a scree plot, of λm against m. The first n PCs account for a fraction∑n
m λm/V [x] of the variance in the data, where we note that the sum of all the eigenvalues∑N
m λm = Tr Q = V [x].
PCA is sometimes sensitive to outliers; “robust PCA” variations exist to mitigate this. An

advantage of PCA is that new points can easily be mapped: you can just project the new data
points against the PCs already found, without needing to rerun the whole thing again (though
it will then be slightly suboptimal).

When data is not distributed roughly linearly, but for example concentrically, PCA is bad
at finding a good submanifold. An alternative is to use kernel PCA, where the data are mapped
using a kernel map, a vector function Φ(x). This might be a projection into a higher dimension
in which the data are linearly separable. We then use PCA but instead of Q we look for the
eigenvalues/vectors of the matrix K = ΦᵀΦ.

10

3.1.2 Nonlinear Dimensionality Reduction

There exist various other dimensionality reduction techniques which are nonlinear in nature.
Isomap constructs a locally-roughly-Euclidean neighbourhood graph, allowing twisted-up

submanifolds (e.g. Swiss roll) to be unfolded.
t-distributed stochastic neighbour embedding (tSNE) similarly converts data points

x into embedded vectors y in 2 or 3 dimensions by considering the probabilities pi|j that xj
would consider xi to be a neighbour, according to how far away they are. This is typically
weighted according to a Gaussian ∝ exp(−‖xi − xj‖/2σ2) where σ2 is a hyperparameter called
the perplexity. High perplexity means that points will be antisocial and not have many neigh-
bours; low perplexity gives well-connected neighbourhoods. The procedure minimises the dif-
ference between the neighbourhood distributions in the original data space and the projected
data space, which is quantified by the Kullback-Leibler divergence.

Uniform Manifold Approximation and Projection (UMAP) is another method,
similar to tSNE, but more mathematically complicated. UMAP and tSNE are generally better
at nonlinear dimensionality reduction than PCA, but are both non-deterministic and don’t
allow new points to be mapped in.

3.1.3 Self-Organising Maps (SOMs)

SOMs are 2D rectangular or hexagonal grids in the data space, trained to distort over the data
space. Initially, the SOM nodes are chosen at random, usually a flat grid somewhere in data
space. A data point is picked at random, and the node closest to this data point is called the
best-matching unit. All of the SOM nodes are then dragged by varying amounts towards this
data point, according to some neighbourhood function. The neighbourhood function might, for
example, cause nodes to move differently according to how far away the node in question is
from the best-matching unit.

3.2 Clustering

Assuming that the data were generated from a number of different classes, we can try and
separate them out. Data points that are nearby in data space should be in the same cluster.

3.2.1 k-Means

In k-means clustering, each cluster is represented by a centroid cκ for that cluster. Initially,
these are K random points in the data space. Each data point is then assigned to a cluster
according to which centroid it is closest to. Then, the centroids are re-plotted as the mean of
all data points just assigned to their respective clusters. This assignment–update procedure
(called Lloyd’s algorithm) is repeated until convergence.

Variations on k-means might use distance metrics other than Euclidean to assign clusters,
or may use a different kind of average rather than the mean (e.g. k-medians).

k-means ultimately seeks to minimise the following loss function:

K∑
κ=1

∑
xi∈Cκ

‖xi − cκ‖2

11

but it usually instead finds a local minimum, and is quite sensitive to the initialisation. Rather
than randomly initialising the centroids, one might choose specific data points to be the initial
centroids, or do a random assignment step first.

3.2.2 Fuzzy c-means

Fuzzy c-means is an example of a soft clustering method, where rather than strictly assigning
data points to one cluster, one assigns each data point k weights to each cluster. These weights
can be thought of as probabilities that the data point belongs to each cluster. One can make
a soft clustering method hard by “fluffing”, which consists simply of picking the cluster with
the highest weight.

As with k-means, there are assignment and centroid-update steps, though the assignment
step is now “fuzzy”. The data point xi is assigned weights wiκ to each of the K clusters, where

wiκ =

[
K∑
k=1

(
‖xi − cκ‖
‖xi − ck‖

)2/(m−1)
]−1

where m is a “fuzziness hyperparameter”: larger m leads to wiκ being more similar for each κ:
that is, more agnostic assignment. We see that if xi is closer to cκ than to the rest of the ck,
then the fraction will be smaller and the weight wik will be larger. The position of the centroid
is then updated to be the weighted average of all the data points:

cκ =

∑N
i=1w

m
iκxi∑N

i=1w
m
iκ

3.2.3 Hierarchical Clustering

Hierarchical clustering seeks a hierarchy of sub-clusters which represent the data well.
Agglomerative clustering begins with each data point in its own cluster, and at each stage

merges the two clusters which have the best linkage, to form a binary tree. The linkage describes
the similarity between two clusters, and there are many options. We could use:

• The distance between cluster centroids

• The average, or minimum, or maximum pairwise distance between members of the two
clusters

• The clusters which, if merged, would cause the minimum increase in the average distance
to the new centroid (Ward linkage)

Divisive clustering works the other way around: all the data start in one big cluster, which
is hollowed out by progressively making smaller clusters by removing outliers.

3.2.4 Gaussian Mixture Models (GMMs)

GMMs are an example of generative models, where we assume that the data have been drawn
from some parametrised distribution P (x;θ), and in a Bayesian way try to find the parame-
ters θ, by essentially maximum-likelihood estimation. If we assume that the data have come
from one of a number of different classes, this distribution would be the sum of a number of

12

distributions P = P1 +P2 + · · ·+Pκ + · · ·+PK , each with their own parameters – for example,
GMMs assume the distribution is the sum of several Gaussian distributions, which may be
differently normalised. Each data point can then be assigned probabilities Pκ for each class:
this is therefore a soft clustering method.

With enough Gaussians one can describe any distribution, so they are powerful, but they
are quite difficult to optimise. This is partly because the data may actually not have come
from normal distributions, or because the GMM is overfit with too many parameters.

3.2.5 Spectral Clustering

Consider converting a dataset into a graph, where each data point is a node. We might choose
to connect nodes if their respective data points are within a certain distance of each other, or if
they are one of the k-nearest neighbours of each other. We can then define an adjacency matrix
A, where Aij = 1 if xi and xj are connected, and 0 otherwise. Another matrix describing this
graph is the diagonal matrix D of the graph, whose diagonal terms are the degrees (number
of edges) of the nodes. (This is also equal to the sum of each row/column of the adjacency
matrix: Dii =

∑
j Aij.) The Laplacian matrix of the graph is L = D − A; the normalised

Laplacian matrix ` = I −D−1/2AD−1/2 apparently has all its diagonal terms equal to 1. We
then find the m eigenvectors of ` corresponding to the m smallest positive eigenvalues, and
put them into a matrix V, which will be of shape N ×m. These eigenvectors (of shape 1×N)
can be thought of as important features in the data space, so if we transform the data points
using this matrix V we will obtain vectors in m-dimensional space (where we would typically
choose m < dim x) which are apparently easier to cluster than the original data points. If we
just look at the first eigenvector (called the Fiedler vector), then each data point is mapped
to a scalar value (effectively their projections onto the Fiedler vector), and we are then just
clustering scalars which can be done with a humble histogram.

3.2.6 DBSCAN

DBSCAN (density-based spatial clustering of applications with noise) clusters together points
which can be easily reached from each other by making small jumps between data points, and
labels points which are far away from all others as outliers. DBSCAN classifies all points as a
core point, a border point, or an outlier, in the following way:

• If there are at least minPts other data points within a distance ε in data space of the
point in question, that point is classed as a core point. These points are in regions of
high density in data space

• If there are less than minPts other data points within ε, but there is still a core point
that is within ε, then that point is classed as a border point.

• Points not classified as core points or border points are classified as outliers.

where ε and minPts are hyperparameters. You doesn’t need to specify the number of clusters,
and one can find clusters of arbitrary shape. However, if there are two clusters where one is
much more dense than the other, DBSCAN may not be able to identify the latter as a cluster
unless ε is tuned very finely.

13

3.2.7 Evaluating Clustering

There is no universal approach for how good a clustering algorithm has performed, as this is
ultimately subjective. Internal evaluation uses the data that were clustered to evaluate the
clustering (as opposed to external evaluation which uses data that were not used in clustering,
e.g. ground-truth labels). This typically involves quantifying similarity between members of
the same cluster, and between members of different clusters; beware that if the clustering was
performed using the same similarity metric as one is using to evaluate the clustering, then this
will naturally be evaluated pretty well.

The silhouette coefficient method assigns each data point a silhouette value si ∈ [−1, 1]
according to how similar it is to other members of its own cluster Ci, compared to members of
the next-most-similar cluster Cj. Each data point is assigned first a cohesion and a separation:

ai =
1

|Ci| − 1

∑
k∈Ci

‖xi − xj‖ bi =
1

|Cj|
∑
k∈Cj

‖xi − xk‖

where the next-most-similar cluster Cj is decided by whichever cluster gives the smallest bi.
The silhouette coefficient is then given by si = 1 − ai/bi if ai < bi (indicating that this point
is in the right cluster), and si = −1 + bi/ai if ai > bi (indicating this point is in the wrong
cluster). The overall silhouette coefficient S is then the mean of the si.

For clustering algorithms where the number of clusters K is a hyperparameter, the elbow
method can help you decide. Run the clustering for several values of K, and evaluate the
fraction of explained variance – that is, the ratio of inter-cluster variance to total variance.
K + 1 clusters will always improve this quantity with respect to K clusters, but if we are
starting to overfit then the improvement will be much less than from going from K−1 to K, in
which case K would be the ideal number of clusters. Plotting the explained variance fraction
against K, we would find a bit of an “elbow” at the ideal value of K.

If the clustering algorithm is generative and has a likelihood function L (e.g. GMMs), we
can use information criteria For example, the Akaike information criterion is given by:

AIC = 2P − 2 lnL

where P is the number of parameters in the generative model. A lower AIC means a better
model: we see that large K and low L mean a bad model.

3.2.8 Problems with Clustering

• Clustering techniques sometimes overzealously find clusters which are not really there,
but are merely a consequence of noise.

• Clustering is often very sensitive to the choice of hyperparameters and distance metrics

• Distance metrics are sometimes quite expensive to calculate, especially with high-dimensional
data. Further, many algorithms require calculating the distance metric relative to all of
the other points in the dataset, which can make the algorithm complexity ∼ N2

• The curse of dimensionality – the phenomenon whereby high-dimensional data are always
quite far away from each other just because there are a lot of dimensions to add up –
means that clustering gets difficult in higher dimensions

14

• Hard clustering algorithms can be upset by the presence of outliers, as they are forced to
try and assign them a cluster membership.

• Clustering is often not stable to perturbations, e.g. the removal of a random subset of
the data

4 Outliers & Missing Data

Outliers are data points which are considerably different from the rest of the dataset. They
are sometimes a nuisance (e.g. due to noise), but are sometimes exactly what we are looking
for (e.g. rare diseases, lensed high-redshift quasars [Byrne+24]).

Outliers can be identified by data-based procedures (e.g. DBSCAN) or model-based proce-
dures (e.g. points which significantly distort the model).

Missing data (e.g. missing fields in partially-complete data) may be:

• Missing completely at random (MCAR): there is no known reason why the data should
be missing. This is annoying but at least introduces no bias

• Missing at random (MAR): the data are missing as a probabilistic result of the values of
some other features. For example, if feature 2 is more likely to be missing if feature 1 is
positive (but still recorded), feature 2 is MAR If the data are MAR, they can often be
imputed by a generative model

• Missing not at random (MNAR): the data are missing because of its value. For example,
feature 2 might be missing because its true value is negative and that breaks the recording
device or something

Missing data may be omitted if they’re being awkward, or alternatively we may decide not to
use a particular feature if it is absent from some of the data points.

15

