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1 Fondamentali

Machine learning is the development of models with many parameters φ to achieve a task
requiring intelligence. The achievement of this task is quantified by a loss function L(φ) which
depends on the parameters, as well as on some training data. Training a machine learning
model consists of using that training data to find parameters that minimise the loss function;
the resulting model should ideally be able to generalise beyond the data that it was trained on.

For this preliminary discussion, it will be instructive to consider the case of supervised
learning. Supervised learning seeks to train a model f(x;φ) to map inputs x to outputs y.

1.1 Loss functions L

The loss function motivates the neural network; the training process proceeds solely by trying
to find parameters that minimise it, when applied over training data {xi,yi}. In a supervised
learning framework, the loss function quantifies the mismatch between the model predictions
f(xi;φ) and the targets yi:

L(φ; {xi,yi}) =
∑
i

‖f(xi;φ)− yi‖

Where ‖·‖ is some distance measure. For example:

• If yi are scalars, this measure might simply be the square.

• If yi are vectors (or a collection of numbers which might be written as a vector), then
this might be the square Euclidean norm.

• If yi are either 0 or 1 (i.e. we are doing a binary classification), we might use the binary
cross-entropy :

L(φ; {xi, yi}) = −
∑
i

[yi ln f(x;φ) + (1− yi) ln (1− f(x;φ))]

Importantly, L should be a scalar, such that minimising it is meaningful.
If an output y is probabilistic with some distribution (e.g. a person’s height), then ML

models can be used to predict parameters of that distribution, rather than make a guess at the
output. For example, we may want to find the probability distribution of y = people’s heights
parametrised by x = age. Now this probability distribution is usually a normal distribution,
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with a µ and σ2 which depend on age. In such cases, we could use an ML model to predict
not simply the height of a person with a given age (which will probably be a bad prediction
as heights have a distribution), but the mean and standard deviation of the distribution given
that age: (µ, σ2) = f(x;φ). The loss function could then be given by the likelihood:

L(φ; {xi,yi}) = −
∏
i

P [yi|f(xi;φ)] = −
∏
i

1√
2πσ2(x;φ)

exp

(
−(yi − µ(xi;φ))2

2σ2(xi;φ)

)

where the negative sign is there because we want to maximise the likelihood rather than
minimise it. (In practice we would usually write the loss function in terms of the logarithm
of the probability for numerical reasons). This is essentially using machine learning to do
Bayesian inference (in particular, by the maximum-likelihood method).

1.2 Gradient Descent and Backpropagation

How do we find the optimal parameters φ to minimise L? The natural way of doing this is
to compute ∇φL, and move the parameters in the direction of decreasing loss in parameter
space: φ← φ− λ∇φL, where λ > 0 is the learning rate. (The learning rate is an example of
a hyperparameter, a parameter which is not trained, but rather set by the user to govern how
the training proceeds.) This method of training is called gradient descent, intuitively trying to
find the minimum of the loss function in parameter space.

The gradient ∇φL could be calculated numerically, but modern ML implementations are
usually just able to analytically differentiate the loss function and calculate ∇φL directly.

1.2.1 Modifications to Gradient Descent

Loss surfaces often have many local minima, which simple gradient descent algorithms are
susceptible to getting stuck in if they start in an unlucky part of parameter space. As such,
introducing some stochasticity is usually desired. Stochastic gradient descent (SGD) incorpo-
rates this by using a loss function which only uses a subset B of the training data (known as a
batch) at each training step:

φ← φ− λ 1

N

∑
i∈B

∇φL(φ; xi,yi)

This leads to the parameters not necessarily taking the most downhill path possible in the loss
space, potentially allowing local minima to be evaded. Also, because the overall training set
may not be representative of the entire data space, the stochasticity of training only on a batch
at a time turns out to increase generalisability to unseen data.

The intuition of trying to find the bottom of a hill motivates several modifications of simple
gradient descent. For instance, for a given learning rate (step size), it is likely that towards
the end of training, successive steps will jump back and forth over the minimum, rather than
settling to the bottom. As such, one modification is a learning rate schedule, whereby the
learning rate starts large (to quickly get somewhere near to the minimum) and reduces over
time, gradually tuning the parameters more and more finely to allow them to smoothly coast
to the bottom of the loss surface.

Another modification is to take intuition from physics and think about a ball rolling around
on a surface. A momentum can be assigned to the gradient descent at each step, so that if the
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parameters shoot into a local minimum they will fly up out the other side, hopefully ending
up in the global minimum eventually. The implementation of this might look something like:

m← βm + (1− β)∇φL; φ← φ− λm

where the momentum hyperparameter β controls how much we want to incorporate the mo-
mentum: β = 0 gives simple gradient descent. Variations on this theme include Nesterov
accelerated momentum, which moves in the direction of what the gradient would be if we
moved in the direction dictated by SGD:

m← βm + (1− β)∇φL

∣∣∣∣
(φ−λm)

A more advanced, complex, and commonly-used variation is adaptive moment estimation (AKA
Adam), which adds explicit time-dependence. For the timestep t ≥ 0 and a new hyperparam-
eter γ,

m← βm + (1− β)∇φL v ← γv + (1− γ)‖∇φL‖2

m̃t ←
m

1− βt
ṽt ←

v

1− γt

⇒ φ← φ− λ m̃t√
ṽt + ε

where ε is a small constant to aid convergence.

1.3 Performance Metrics

How do we evaluate the performance of a model? Importantly, we cannot evaluate the perfor-
mance of a model based on its performance on data that it has been trained on: by the very
nature of training, it will get almost monotonically better at this. After training for a long
time, performance on unseen data usually gets worse, as the model begins to overfit to the
training data, picking up only on the noise and specific features of the training data rather than
on features we want it to learn in order to generalise to unseen data. As such, we typically split
our dataset into a training set and a validation set, which the model never uses to train, but is
used to see track how good the model is at generalising. Early on in training, the validation
loss usually falls as the model learns the most salient features in the data (both training and
validation), before starting to rise once the model begins to overfit to the training set. There is
a sweet spot where the validation loss reaches a minimum (or plateaus), and the model achieves
maximum generalisability (for a particular choice of hyperparameters).

As mentioned above, one way of quantifying the performance of a model on unseen data is
to calculate the loss function – on the validation set. But depending on what exactly one is
interested in, one might track different performance metrics (though still only on the validation
set). For example, if one is training a classifying algorithm, one might track the top-1 or top-5
accuracy of the model on the validation set.
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1.4 Regularisation

Regularisation encompasses ways of using prior knowledge about what kinds of things the
network should be learning as a way to mitigate against overfitting.

1.4.1 Explicit Regularisation

Sometimes the way in which models overfit to data consists of some parameters becoming
very large (both positive and negative) in order to contrivedly bend as close as possible to the
training data. This is often seen when one tries to fit a high-order polynomial to a dataset: the
coefficients can become very large in magnitude. A common approach to mitigate against this
is explicit regularisation: adding a “regularisation term” to the loss function. For example:

Lreg = L+ µg(φ); g(φ) = ‖φ‖
where ‖·‖ might be the L2 norm (L2 regularisation) or the L1 norm (L1 regularisation). This
will discourage models with large parameters, and the incorporation of this validation term is
equivalent to a prior on our model that the model should be “simple”, i.e. with small parameters
(this is effectively an Occam term).

1.4.2 Implicit Regularisation

Implicit regularisation is the numerical fact that taking finite steps in parameter space turns
out to lead to the parameters missing the global minimum of the loss function slightly. Finite-
step gradient descent on a loss function L turns out to be equivalent to infinitesimal-step (i.e.
idealised) gradient descent on a loss function L̃:

L̃(φ) = L(φ) +
λ

4
‖∇φL‖2

Naturally, this doesn’t change the positions of the minima in parameter space, where∇φL = 0
by definition. This regularisation is effectively built-in to the use of finite-step gradient descent.

In stochastic gradient descent, the same principle turns out to favour regions in the param-
eter space where the gradients are similar between different batches, leading to the parameters
reaching values that are ideal for generalisability (rather than just where one batch of data
happens to be well-modelled). This may be a reason that SGD generalises better than GD.

1.4.3 Other Regularisation Heuristics

Early Stopping. As mentioned in the previous section, the validation loss (which, recall,
estimates the generalisability of the model) typically decreases initially before increasing again.
By choosing to stop after T epochs, we can train the model only up to the point when it starts
overfitting.

Ensembling. To mitigate against the fact that some models will end up in local minima
of the loss space, we can simply train several models with different initialisations (leading to
different final parameters) and take the average of their predictions. Alternatively, rather than
different initialisations for the different models, we can use different training data, for example
by bootstrapping.

Dropout. At each training step, dropout randomly zeros out some fraction of a model’s
intermediate values (in the language of neural networks, these are neurons or hidden units).
This has the effect of preventing parameters from conspiring as described earlier to take very
large magnitudes, positive and negative, in order to overfit to the noise in the training data.
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2 Multilayer Perceptrons (MLPs)

2.1 Shallow Neural Networks

The simplest type of machine learning model is a multilayer perceptron. In the simple case of
an MLP which has scalar inputs and outputs, the model takes the form:

f(x;φ) = φ00 + φ0i · a(φi0 + φi1x)

where we have used the summation convention over i, which runs from 1 to D, where D is
the width of the hidden layer. The hidden layer is a set of D neurons, which take the values
hi = a(φi0 + φi1x). Finally, a is the activation function: if there were no activation (or if
the activation were linear), then the result f would be achievable simply with the parameters
φ00 and φ0i; the φi1 would be redundant. As such, the activation function must be something
non-linear: a common choice is the ReLU function.

The use of activation functions enables MLPs to be universal approximators : with a wide
enough hidden layer, f(x;φ) can approximate a function of arbitrary complexity. Using ReLU
as an example, we see that a hidden neuron hi will take a value of φi0 + φi1x, unless this is
negative in which case it will take the value 0. Thus it will be a linear function on one side of
−φi0/φi1, and 0 on the other. This will lead to a “joint” in the final function f , as f is a linear
combination of the hidden neurons. The function f will therefore have (at most) D joints,
dividing its domain into D + 1 different regions where f takes a different linear form (though
it will still be continuous as the individual ReLUs are). As D →∞, the domain is divided into
infinitely many infinitesimal regions, able to approximate any continuous function.

2.1.1 Multiple Inputs

If the function has multiple inputs x = {x1, x2, . . . , xM}, i.e. the input space is M -dimensional,
the hidden layer simply takes the extended form:

f(x;φ) = φ00 + φ0i · a(φi0 + φijxj)

where the summation is now over j as well as i. The joints are now hyperplanes in the M -
dimensional input space; there are D such planes. It can be shown that if D ≤ M , then this
generally divides the input space into 2D regions. Within each of these regions, f takes a differ-
ent linear form, and again, with high enough D a general scalar function can be approximated.

2.1.2 Multiple Outputs

Suppose x is a scalar again, but this time there are multiple outputs y = {y1, y2, . . . , yQ}. In
that case, f must be a vector-valued function, with components fk given by:

fk(x;φ) = φk00 + φk0i · a(φi0 + φi1x)

In this case, the real line is again partitioned into (generally) D + 1 regions, and each of the
components fk have D joints, at the same values of xi: −φi0/φi1.
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2.1.3 Multiple Inputs and Outputs

For a network with D hidden units, operating on an M -dimensional input space and a Q-
dimensional output, the functional form of f is:

fk(x;φ) = φk00 + φk0ia(φi0 + φijxj)

where i runs from 1 to D, j runs from 1 to M , and k runs from 1 to Q. Each component of
this function will have D hyperplane joints, in the same place.

How many parameters are required in general? Each hidden layer i ∈ [1, D] requires M + 1
parameters, giving D(M + 1) parameters up to the hidden layers. Now each component of the
output has parameters φk00 and φk0i, giving Q(D + 1) further parameters, giving Q(D + 1) +
D(M + 1) = D(M +Q+ 1) +Q parameters in total.

2.2 Deep Neural Networks

Networks with one hidden layer are universal approximators, but for functions with significant
second derivatives and large numbers of dimensions, one would need an impractically large
number of parameters to get close. Deep networks allow a larger number of linear regions/joints
for the same number of parameters, and are hence much more widely used.

Consider a network with two layers of widths D1 and D2, taking a one-dimensional input
x and yielding a one-dimensional output y. The first hidden layer linearly scales the input and
applies an activation, as before: h1i = a(φ1i0 + φ1i1x), where i runs from 1 to D1. The second
hidden layer linearly scales the first hidden layer and applies an activation:

h2j = a(φ2j0 + φ2jihi) = a(φ2j0 + φ2jia(φ1i0 + φ1i1x))

where j runs from 1 to D2. We can then have a final layer with e.g. f(x;φ) = φ00 +φ0jh2j. This
can be trivially extended to an input of any dimension, to give an output of any dimension.
The above is also general to the choices of the number of hidden layers, and the widths of
those layers, all of which are hyperparameters. Hyperparameters which define the structure of
a neural network define the network’s architecture.

2.2.1 Backpropagation

Having described the functional form of a deep neural network, we would now like to learn
how to train it: how can we change the parameters of the network to minimise a loss function?
This involves taking the derivative of the loss function with respect to all of the parameters φ.
We consider below the case with one input, one output, and two hidden layers:

h1i = a(φ1i0 + φ1i1x)

h2j = a(φ2j0 + φ2jih1i)

f = φ00 + φ0jh2j

For simplicity, consider first a batch size of 1, so that the loss function at each step is just
L(φ;x, y) = [f(x;φ)− y]2, where x is the input and y the target. To differentiate this with
respect to the parameters, we will clearly have to apply the chain rule lots of times. To get the
derivative with respect to the final bias φ00 right at the end, we will have:

∂L

∂φ00

=
∂L

∂f

∂f

∂φ00
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which is not too bad because L depends on f very simply (just quadratically) and ∂f/∂φ00 = 1.
Similarly, to differentiate with respect to one of the φ0j, we have ∂L/∂φ0j = [∂L/∂f ][∂f/∂φ0j ],
the latter bracket being simply the corresponding h2j.

As we go deeper back into parameters earlier in the neural network, we need more links in
the chain (rule). For example, with respect to one of the φ1i1, following the above sequence
backwards we have:

∂L

∂φ1i1

=
∂L

∂f

∂f

∂h2j

∂h2j

∂h1i

∂h1i

∂φ1i1

Let’s look at these derivatives in turn.

• ∂L/∂f has already been discussed: L is simply a quadratic function of f .

• ∂f/∂h2j is simply equal to the parameter φ0j. This derivative is in terms of another
parameter; when evaluating the derivative we use the original value of this parameter:
we don’t update any of the parameters until we know how they all should change.

• ∂h2j/∂h1i will depend on the derivative of the activation function:

∂h2j

∂h1i

= a′(φ2j0 + φ2jih1i) · φ2ji

It is therefore important that activation functions are easy to differentiate.

• ∂h1i/∂φ1i1 also depends on the derivative of the activation function:

∂h1i

∂φ1i1

= a′(φ1i0 + φ1i1x) · x

We see that as we evaluate the derivatives for parameters earlier and earlier on in the network,
we need to first evaluate derivatives for later parameters. As such, when optimising deep neural
networks, we typically work out the derivatives with respect to the later parameters first, storing
them somewhere for when we need them for the derivatives wrt the earlier parameters. In other
words, we start at the end of the network and work our way back to the start. This motivates
the terminology of backpropagation to describe optimisation of deep neural networks.

2.2.2 Exploding, Vanishing, and Shattered Gradients

Increasing the depth of neural networks improves performance up to a point, but eventually
training becomes volatile. If the weights of a network have a large variance, then the activations
of a given layer will too. This will lead to large gradients, which will explode as we go to earlier
layers in the backpropagation step. The opposite happens if the variance of the weights is
very small. These are described respectively as the exploding and vanishing gradients problem.
These can be mitigated by the He initialisation: rather than sampling the initial weights
∼ N (0, 1), it turns out that the distribution N (0, 2/M), where M is the number of hidden
input units, causes the variances of subsequent layers to be the same.

Alternatively, the gradients may end up changing very rapidly based on the input, the
parameters charting a craggy loss surface. This phenomenon is known as the shattered gradients
problem, and is the neural network equivalent of the butterfly effect. Residual networks, where
the input to each layer is added back to the output can smoothen this out, but one then
usually encounters exploding gradients. Within residual networks, this is mitigated using batch
normalisation, whereby after the hidden units from a layer have been calculated, they are
rescaled to learned values of the mean (γ) and standard deviation (δ), unique to each layer.
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3 Convolutional Neural Networks (CNNs)

The MLP networks discussed in the previous section are also described as fully-connected
networks, because each hidden unit depends on all of the hidden units in the previous layer.
Images are very high-dimensional objects, and a fully-connected network with such a high-
dimensional input would require an impractically large number of parameters. Fortunately,
information in images is massively locally correlated: pixels in one area of the image are
much more often related to nearby pixels than to pixels far away in the image. This can be
exploited to design a more efficient type of neural network, a convolutional neural network,
whose functional approximation power is focused on small patches at a time, achieving far
better performance than a fully-connected network with the same number of parameters.

Consider a one-dimensional “image” x = (x1, x2, . . . ). Consider also a convolutional kernel
ω = (ω1, ω2, ω3). The first hidden layer of a convolutional network is computed by convolving
the kernel with the input:

hi = a(ω0 + ω1xi−1 + ω2xi + ω3xi+1)

To calculate the hi we therefore simply slide the convolutional kernel across the image, and
calculate the values of the hidden units thus.

The above naturally extends to a 2-dimensional image, where the kernel is most often 3×3.

3.1 Variations on the Convolution Layer

3.1.1 Padding

There are edge effects to convolution that should be highlighted: what would h1 be, if there is
no x0? One option is to not bother, and let there be no h1, and similarly at the other end. This
is called valid padding, and leads to the hidden layer being narrower than the input. Another
option is to zero-pad the input, setting x0 = 0 and similarly at the other end. In this way, if
you want the next layer to have the same size as the input layer this can easily be done.

3.1.2 Stride and Max-Pooling

In the above, we slide the kernel along the image, moving one pixel at a time. We could also
choose to slide the kernel along two pixels at a time. This is described as a stride of 2, and
would approximately halve the number of output units (give or take edge effects).

An alternative is to use max-pooling after each convolutional layer in a CNN. This involves
taking a small (typically 2 × 2) window on the post-convolution image, and returning the
maximum value of the (four) pixels. This is done such that the pooling windows are disjoint;
the “downsampling” of the input is the same (± edge effects) as 2-stride convolution.

So which is better, striding or max-pooling? Apparently, max-pooling typically works better
for classification tasks, while striding makes more sense for emulation tasks.

3.1.3 Dilation

Another option is to use a dilated convolutional kernel. Such a kernel “skips” alternate pixels,
giving a convolution of, for the 1D case:

hi = a(ω0 + ω1xi−2 + ω2xi + ω3xi+2)

Dilated kernels can process a larger patch of the image without requiring more parameters.
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3.2 Convolution Channels

Many images are RGB, and thus can be described by 3×P ×P matrices, where P is the pixel-
size of the image. We say that the image has three channels. When processing multi-channel
images with CNNs, the convolutional kernel has another dimension along the channel axis, in
order to process this. So if we are applying a convolution of window size 5 × 5 to an RGB
image, we will need the convolutional kernel to be of size 3× 5× 5.

Applying a single 3 × 5 × 5 kernel to an RGB image will result in a single-channel image.
This is usually not very powerful, as with only one kernel there is only one feature that can
be identified in an image. What is usually done, therefore, is to use a series of convolutional
kernels, of the same dimension, and apply each of them to the same image. The output will
hence also be, in a sense, multi-channel, with the number of channels being equal to the number
of different convolutional kernels applied to the image. For the general case, where we are
applying a P × P kernel to a Ci-channel image to give a Co-channel output, the convolutional
weights of a layer can be put a single matrix of dimension Ci × P × P × Co. (There will also
be a bias for each of the output channels (the ω0 above), which for a given layer can be stored
in a Co-dimensional vector.)
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4 Transformers

Transformers were designed for natural language processing, which is difficult for computers.
Words in a sentence are embedded as thousand-dimensional vectors, of which there may be
hundreds in a passage of text: the input size is enormous, and is also of variable length.
Also, when using natural language humans often use pronouns, which without context can be
ambiguous: to assign meaning to what ‘it’ refers to in a sentence, a transformer must keep the
whole passage in its “attention”.

4.1 Tokenisation and Embedding

To numerically process a sentence, each word1 must be mapped to a vector, called an embedding
of that word. This is typically done by first assigning each word to an integer index, called
a token; this might be simply the alphabetical position of that word in the dictionary. The
tokens are then mapped to embeddings, using a matrix that is optimised during training. The
transformer therefore spatially organises its vocabulary into a useful arrangement.

4.2 Self-Attention Heads

The input to a transformer is a sequence of N embedding vectors {xm}. A self-attention block,
also called a head, processes these, returning the same number of vectors of the same dimension.

For each input embedding vector, a value vector vm is first computed, usually of the same
dimensionality of the embedding vectors2; this is done simply by linearly transforming the
embedding vectors with a trainable weight matrix and bias vector: vm = βv + Ωvxm.

The output of a self-attention layer is a sequence of vectors, one for each input word. The
nth output vector is a weighted average of all the value vectors, where the weights depend on
the two embedding vectors:

san({xm}) =
N∑
i=1

A(xi,xn|{xm}) vi

where A(xi,xn) are attention weightings. These are described below.

4.2.1 Attention weightings

The attention weightings are between 0 and 1, and sum to one. A(xi,xn) roughly corresponds
to the importance of the ith word in the sentence to the understanding of the nth word. So if
the nth word is “it”, then the largest weighting would be to whichever word in the sentence
“it” corresponds to; if this is the jth word, then A(xj,xn) would be close to 1, and larger than
other A(xi,xn).

The attention weightings are calculated by a sub-network. Firstly, the embedding vectors
are converted into two further sets of vectors: keys and queries :

km = βk + Ωkxm; qm = βq + Ωqxm

1In reality, subwords are also processed, allowing for the learning of grammatical modifiers as well as handling
typos. Other sentence components, such as punctuation, bullet points, <end>, etc. are also assigned a vector.

2This is in case one wants to create residual linkages in the network: for such linkages the input and output
dimensions must be the same
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Although similar to the calculation of the value vectors, the k and q vectors need not be of
the same dimensionality as the embedding vectors, though they do need to be of the same
dimensionality as each other. The attention weightings are then calculated as the softmax of
the dot products between the keys and queries:

A(xi,xn|{xm}) =
exp (ki · qn)∑
j exp(kj · qn)

⇒ san({xm}) =
N∑
i=1

exp (ki · qn)∑
j exp(kj · qn)

vi

The self-attention head thus outputs another sequence of N vectors, of the same size and
number as the input. These vectors are then each passed through a simple MLP network (one
at a time) and the outputs for each vector are added together to give the final output of the
transformer. Layer normalisation is often applied after the self-attention head and after the
MLP, where the activations of the hidden units are renormalised to a trained mean/std.

In a typical transformer, there are several self-attention heads, each with their own value,
key, and query biases/weights. These effectively form multiple channels which are input to the
MLP.

4.3 Positional Encoding

The above processing is invariant to the order of the words in the sentence: the sequence {xm}
could be in any order and give the same result. This is not ideal: the position of words in the
sentence is crucial for its meaning.

The simplest way of incorporating the position of a word in a sentence for the transformer
is to add another component to the embedding, and just put the sentence position in this final
component, thus “tagging” the embedding with its position. A classier way of doing this is
to add a positional encoding vector to each embedding vector, thus importing the positional
information to subsequent layers.
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5 Variational Autoencoders (VAEs)

Probabilistic generative models, a type of unsupervised ML model, attempt to model the
probability distribution of the data, f(x|φ) ≈ P (x). Such models can be trained in a maximum-
likelihood sense, by minimising the loss function:

L(φ; {xi}) = −
∑
i

log f(xi|φ)

If this distribution is well-modelled, then new instances can be sampled: the model is generative.
Latent variable models take an indirect approach to modelling P (x): modelling the joint

distribution P (x, z) of x and another variable z, called the latent variable. The original distri-
bution can then be recovered by integrating:

P (x) =

∫
P (x, z) dz =

∫
P (x|z)P (z) dz

At first glance this seems to have made things more complicated, but it enables very complex
distributions P (x) to be modelled by breaking it down into the convolution of two other
distributions which can be much simpler.

For example, we might choose P (z) to be a standard multivariate normal distribution; we
might choose P (x|z) to be a normal distribution with mean fµ(z|φ) and covariance fΣ(z|φ),
each evaluated by a neural network. In this way, the model distribution for P (x) is a shmear of
Gaussians. New examples x∗ can be generated by first generating z∗ from the standard normal,
then calculating fµ(z∗|φ) and fΣ(z∗|φ), and finally generating x∗ from the normal distribution
with that mean and covariance.

I don’t really know what else is needed here; the course sort of trailed off at this point, but
the examinable material calls for a “conceptual understanding of VAEs”. I’ll give it a go.

VAEs consist of an encoder and a decoder, to map data x to and from their latent space
representations z. The encoder consists of approximating the posterior distribution q(z|x),
which is taken to be a normal distribution with mean gµ(x|θ) and covariance gΣ(x|θ). After
encoding a data instance x, a latent sample z∗ is sampled according to this posterior distribution
q(z|x). Finally, the decoder directly predicts the data x, using a second neural network:
x∗ = f(z∗|φ). The probability of obtaining that data point x∗ is estimated; I’m not really sure
how. The model is then trained to maximise the probability of the data but also to massage the
latent distribution q(z|x) into a form we might want, such as a standard normal distribution,
in order to give the latent space useful structure.

12



6 Diffusion Models

Diffusion models are another kind of probabilistic generative model. They are trained to reverse
a process of multistage stochastic degradation of an image, typically the progressive addition
of random noise. Once trained, one can give the generative model some random noise as input,
and it will “denoise” it into a recognisable image.

6.1 Diffusion Process

Diffusion of an image x proceeds by progressively mixing the image with Gaussian noise εt:

zt =
√

1− βt zt−1 +
√
βt εt; z0 ≡ x ⇒ zt|zt−1 ∼ N

(√
1− βt zt−1, βt1

)
The noise schedule βt controls how much noise is added at each diffusion step. After a large
number T steps, the resulting image zT will essentially be itself random noise.

Usefully, noising with this prescription means that there is an analytic distribution for zt|x.
For example, to get z2 in terms of x,

z2 =
√

1− β2

(√
1− β1 x +

√
β1 ε1

)
+
√
β2 ε2

=
√

(1− β2)(1− β1) x +
√
β1(1− β2) ε1 +

√
β2 ε2

Now εt ∼ N (0,1), so the two final terms ∼ N (0, β1(1− β2)1) and ∼ N (0, β21) respectively.
Adding them together gives more Gaussian noise, with the variances added:

z2 =
√

(1− β2)(1− β1) x +
√

1− (1− β1)(1− β2) ε

≡
√
α2 x +

√
1− α2 ε

where αt ≡
∏t

i=1 (1− βi). By induction we can extend this to any t, allowing us to write:

zt|x ∼ N [
√
αt x, (1− αt)1]

Thus we have derived the distribution of zt, for any t in the diffusion process.

6.2 Training

Diffusion models predict the (cumulative) noise that has been added to an image at any
timestep t. During training, an integer t is sampled randomly from the range [1, T ], and
an image is noised by an amount according to the noise schedule3. The network is then trained
to take in this noised image as input, and return as output the cumulative noise that was added
by timestep t: for a single image x,

` =
∥∥f(√αt x +

√
1− αt ε, ; t,φ

)
− ε
∥∥2

One might ask why we don’t just train the network to predict the cumulative noise added
by the timestep T? Why bother learning how to predict noise that was added by the time of
each intermediate step? The answer is that neural networks learn small steps more easily than
large steps, so by learning how much noise is added along the way, the network has an easier
task: simply put all the small steps together.

3This could be done by repeatedly noising the image (using the βt), to update zt to zt+1, but since a way
of going directly from the image x to zt was derived above (using the αt), we just do that instead.
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6.3 Sampling

Once trained, we have a function f that can take in a partially-noised image and return the
noise that might have been added to the original image. We can use this to generate some
realistic-looking images from pure Gaussian noise. After T timesteps, the image will have
essentially become random noise, so if we can start with an image of random noise z∗T and
denoise it, then we will end up with a realistic image.

Again, we could try to go directly from z∗T to x∗, but performance turns out to be better if
we go from z∗T to z∗T−1, progressively down until z∗1, which we denoise to x∗. It turns out that
the way to do this is as follows:

z∗t−1 =
1√

1− βt
z∗t −

βt√
1− αt

√
1− βt

f(z∗t ; t,φ) +
√
βt ε

∗

where again ε∗ ∼ N (0,1). If I had more energy, or if it were taught better, I might have been
motivated to find out where on earth this comes from. Finally, we denoise z∗1 using:

x∗ =
1√

1− βt
z∗1 −

β1√
1− α1

√
1− β1

f(z∗1; t = 1,φ)

6.4 Time Encoding

Note that above the neural network takes the timestep t as an input. As with the discussion
of positional encoding in the section on transformers, the timestep can be implicitly included
with the input, perhaps by appending it on the end, or adding an encoding vector.
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