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1 Fondamentali

1.1 Kolmogorov Axioms

Consider a set of exclusive outcomes Xi, with probabilities P (Xi). The Kolmogorov axioms
state that these probabilities must satisfy:

• P (Xi) ≥ 0∀ i. Probabilities can’t be negative.

•
∑

i P (Xi) = 1, where the sum is over all possible outcomes. Something has to happen.

• For mutually exclusive probabilities (where it is impossible for both to happen), P (Xi orXj) =
P (Xi) + P (Xj)

1.2 Properties of Probabilities

Consider two outcomes X1 = A and X2 = B.

• If A and B are not mutually exclusive, then the above formula overcounts the possibility
that both can happen. In this case, we need to subtract this off to get P (A or B):

P (A orB) = P (A) + P (B)− P (A andB)

If mutually exclusive, this reduces to the above.

• If A and B are independent, then

P (A andB) = P (A)× P (B)

• The probability of A, assuming that it is known that B occurs, is called the conditional
probability. It is given by:

P (A|B) =
P (A andB)

P (B)

If mutually exclusive, this will naturally be 0. If independent, this will reduce to P (A).

• The above naturally leads to Bayes’ Theorem, relating the conditional probabilities
P (A|B) and P (B|A):

P (B|A) =
P (B)

P (A)
P (A|B)
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• Often there are several outcomes Bi which correspond to the outcome B (e.g. rolling a
4 corresponds to rolling an even number), and outcome A always occurs with one of the
outcomes Bi. For example, A could be Arsenal winning, and the Bi could be the starting
goalkeeper being David Raya, Aaron Ramsdale or Karl Hein. The following law - the law
of total probability - is then sometimes useful:

P (A) =
∑
i

P (A|Bi)P (Bi)

Sometimes it is useful to substitute this into the denominator of Bayes’ Theorem.

1.3 Probability Distributions

For a random variable X which can take a range of values, we can define a function p which
yields the probability of the outcome taking a particular value.

If the random variable can take any of a set of discrete values xi, then the function p = p(xi),
such that of course

∑
i p(xi) = 1, is called a probability mass function (pmf).

If the random variable can take any real value between x = L and x = U , then it makes no
sense to speak of the probability of X taking a particular real value – that probability would
be zero. It only makes sense to speak of the probability that X takes a value between x and
x + dx, which is written p(x) dx, defining the probability distribution function (pdf) p(x). We

then have
∫ U
L
p(x) dx = 1.

The cumulative distribution function (cdf) F (x) is the probability that X takes a value less
than x:

F (x) ≡
∫ x

L

p(x) dx ; F (L) = 0; F (U) = 1; P (a < X < b) = F (b)− F (a)

Consider a joint pdf of two different random variables X and Y . If X and Y are discrete,
the probability of outcome (X, Y ) = (x, y) is written p(x, y). If X and Y are continuous, then
p(x, y) dx dy is the probability of X being between x and x + dx and Y being between y and
y + dy.

If X and Y are independent, then the joint pdf will factor out into a pdf for each variable:
p(x, y) = pX(x)pY (y).

More generally, to access the overall probability distribution for one of the variables, say
X, we need to account for all the possible values of Y :

pX(x) =

∫ UY

LY

p(x, y) dy

If independent, this reduces to the above case. This is referred to as the marginal distribu-
tion of X, and integrating out a subset of the random variables under investigation is called
marginalisation. Analogously to the conditional probability, we can then write the probability
of Y given X as the probability of both, out of the probability of X.

p(y|x) =
p(x, y)∫
p(x, y) dy
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1.3.1 Change of variables

Suppose we know that X ∼ p(x), i.e. X is distributed with some known pdf pX(x). Suppose
also that there is another random variable M = M(X) which is a known function of X. How
is M distributed?

Suppose first that M(X) is one-to-one. In this case, if X is between x and x + dx (which
has a probability of p(x) dx), then M will be between m = M(x) and m+ dm = M(x+ dx) =
m+ (dM/dx) dx. So the probability of M being between m and m+ dm is pX(x) dx. Thus

pM(m) |dm| = pX(x) dx ⇒ pM(m) = pX(x)

∣∣∣∣ dx

dm

∣∣∣∣ =
pX(x)

|dM/dX |

where the absolute sign accounts for the possibility of M being monotonically decreasing as
well as increasing.

If M(X) is not one-to-one, then for M to take the value m, X might take several values x.
If M(X) = X2, then both X = ±2 will lead to M = 4. We therefore need to account for all of
those regions, and we instead have

pM(m) =
∑
i

p(xi)

|dM/dX |xi

where the sum is over all the different values of xi for which M(xi) = m.
Extending the monotonic case to multiple dimensions, if we have multiple independent

variables X ∼ p(X), and multiple transformation functions Y(X), then the joint pdf for U and
V will be

p(Y) =

∣∣∣∣J(X

Y

)∣∣∣∣ p(X), J

(
X

Y

)
i,j

=
∂Xi

∂Yi

where we are using the inverse Jacobian of the transformation.

1.4 Properties of Distributions

1.4.1 Mean, Variance, and Moments

Consider the random variable X ∼ p(x). The expectation value of X, written µ or E[X] or
〈X〉 depending on the context, is the mean of the distribution:

µ ≡
∫
xp(x) dx

More generally, the expectation of any function M(X) is

E[M(X)] =

∫
M(x)p(x) dx

From this and the properties of integration we see that the expectation is a linear operator:
E[aX + bY ] = aE[X] + bE[Y ].

The spread of a distribution can be quantified by the variance V [X] = σ2, or the standard
deviation σ. V [X] is the expectation of the squared deviation from the mean

V [X] ≡ E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2 = E

[
X2
]
− µ2
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=

∫
(x− µ)2 p(x) dx =

∫
x2 p(x) dx−

(∫
x p(x) dx

)2

We can more generally define algebraic and central moments of the distribution by:

µ` ≡ E
[
X`
]

α` ≡ E
[
(X − E[X])`

]
We see that µ1 = µ and V [X] = α2. Higher-order quantities include the skew γ and the
kurtosis κ:

γ ≡ E

[(
X − µ
σ

)3
]

=
α3

α
3/2
2

; κ ≡ E

[(
X − µ
σ

)4
]

=
α4

α2
2

The excess kurtosis κ− 3 quantifies the tailedness compared to a Gaussian distribution, which
has κ = 3.

1.4.2 Covariance and Correlation

For two random variables X and Y , we define the covariance of the two variables as

cov[X, Y ] ≡ E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

Note that cov[X,X] = V [X]. If we construct a covariance matrix Vxy = cov[X, Y ], the
diagonal terms will therefore be the variances of the individual random variables. If X and Y
are independent, then the integral used to calculate E[XY ] will factor out into E[X]E[Y ], the
covariance will be 0, and the covariance matrix will be diagonal.

A de-dimensionalised version of the covariance is the correlation, defined by:

ρ[X, Y ] =
cov[X, Y ]

σXσY
The elements of the correlation matrix are then clear, including the diagonal components which
will all be 1. The correlation is always between −1 and 1, ultimately due to the Cauchy-Schwarz
inequality:

cov[X, Y ]2 =

(∫∫
(x− µX)(y − µY )p(x, y) dx dy

)2

≤
∫

(x− µX)2p(x, y) dx

∫
(y − µY )2p(x, y) dy = V [X]V [Y ]

⇒ | cov[X, Y ]| ≤ σXσY ⇒ |ρ[X, Y ]| ≤ 1

where the relevant inner product is defined as 〈X, Y 〉 ≡ E[X, Y ].

1.4.3 Propagating Errors

If we know the variance of some random variables Xi, how can we calculate the variance of
some function Z(Xi)? It can be shown that the variance is not a linear operator, but rather:

V [aX + bY + c] = a2V [X] + b2V [Y ] + 2ab cov[X, Y ]

What if we have a more complicated, nonlinear function of the Xi? If we assume small devi-
ations from some value (likely the mode), we can Taylor expand to approximate the function
as linear about that point. We then have

V [Z(X, Y )] ≈ ∂Z

∂X

∣∣∣∣2
X0

V [X] +
∂Z

∂Y

∣∣∣∣2
Y0

V [Y ] + 2
∂Z

∂X

∣∣∣∣
X0

∂Z

∂Y

∣∣∣∣
Y0

cov[X, Y ]
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1.4.4 Convolutions

Consider two random variables X and Y which are independent: p(x, y) = pX(x)pY (y). We
now wish to find the pdf of their sum Z = X+Y . It is easiest to approach this by first looking
at the cumulative distribution for Z:

F (Z) ≡ P (X + Y < z) =

∫ ∞
−∞

pX(x) dx

∫ z−x

−∞
pY (y) dy =

∫ ∞
−∞

pY (y) dy

∫ z−y

−∞
pX(x) dx

The pdf is then found by differentiating with respect to z:

pZ(z) ≡ dF

dz
=

∫ ∞
−∞

pX(x)pY (z − x) dx =

∫ ∞
−∞

pY (y)pX(z − y) dy

which is just the convolution: pZ = pX ⊗ pY .

1.4.5 Characteristic Function

For a continuous random variable X ∼ p(X), the characteristic function ϕ(t) is simply the
Fourier transform of the probability distribution function:

ϕ(t) ≡
∫ ∞
−∞

eitx p(x) dx = E
[
eitX

]
The probability distribution p(x) can be recovered using the inverse transform: p(x) = 1

2π

∫
e−itxϕ(t) dt.

The characteristic function is useful for several reasons. For example, it encodes all of the
moments of the distribution:

ϕ(t) =
∞∑
n=0

(it)n

n!
E[Xn] =

∞∑
n=0

(it)n

n!
µn

which can be individually extracted by differentiation at t = 0:

dnϕ

dtn

∣∣∣∣
0

= inµn

This is useful because sometimes it is easier to find the moments of a distribution by finding
the characteristic function and differentiating, than by integrating xnp(x).

1.5 Common Probability Distributions

1.5.1 Binomial

Consider a fixed number of trials n, where in each trial the outcome is either success (with
probability p) or failure (with probability q = 1 − p). The binomial distribution gives the
probability of achieving exactly k successes out of these n trials. There are

(
n
k

)
= n!

k!(n−k)!
different ways of achieving k successes out of n, each of which has probability pk(1− p)n−k, so
the probability that there are k successes is given by:

P (k;n, p) =
n!

k!(n− k)!
pk(1− p)n−k

The sum of these probabilities is the binomial expansion of (p + (1 − p))n, which is 1 as
required. The mean number of successes can be shown to be E[k] = np, and we can also find
E[k2] = n(n− 1)p+ np, and hence V [k] = np(1− p) and σk =

√
np(1− p).
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1.5.2 Poisson

The Poisson distribution counts the number of independent events occurring in a given time
period, assuming a constant mean number of occurrences λ. The distribution is therefore
defined for any non-negative integer up to infinity. An example is the number of cosmic rays
reaching a detector in an hour: it is unlikely but technically possible for 1090 cosmic rays to hit
the detector in an hour; it is possible for 0 cosmic rays to hit it; it is impossible for −1 cosmic
rays to hit it.

The Poisson distribution is derived from the binomial distribution. We can think of each n
infinitesimal time intervals δt = T/n each as a trial, which can either be a success (cosmic ray
detected) with a very small probability p = λ/n, or a failure with probability 1− p. Letting n
tend to infinity but np = λT remain finite, the binomial distribution becomes

P (k;n, λT/n) = lim
n→∞

n!

k!(n− k)!

(
λ

n

)k(
1− λ

n

)n−k
→ nk

k!

λk

nk

(
1− λ

n

)n
→ λk

k!
e−λ

from which we obtain the Poisson distribution

P (k;λ) =
λk

k!
e−λ

It can be shown that the mean of the Poisson distribution is E[k] = λ, and E[k2] = λ(λ+1)⇒
V [k] = λ⇒ σ =

√
λ.

An important use case of the Poisson distribution is in histograms. Each bin of a histogram
counts the number of events that go into that bin, and if these are independent and come in at
a uniform rate then the number in each bin is Poisson-distributed, with λ in that case being
the number in that bin. The error bars on histogram bin heights (σ) should therefore be the
square root of the height of the bin.

1.5.3 Normal

For the standard normal distribution, p(x) = e−x
2/2/
√

2π. It can easily be shown that this
distribution has E[X] = 0, E[X2] = 1, and hence V [X] = 1 and σ = 1. By performing the
transformation x 7→ (x− µ)/σ, we obtain the general normal distribution with a mean µ and
standard deviation σ:

p(x;µ, σ) =
1√

2πσ2
exp

[
−1

2

(
x− µ
σ

)2
]

The cdf of the normal distribution, Φ(x), is usually expressed in terms of the error function
erf(z) = 2√

π

∫ z
0
e−t

2
dt. We find

Φ(x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
It is useful to extend the normal distribution to many variables X = {Xi}, some of which

may be correlated. Generalising the above, we find:

p(x;µ,VX) =
1√

(2π)n|VX|
exp

[
−1

2
(x− µ)ᵀV−1X (x− µ)

]
where VX is the covariance matrix of the Xi.
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1.5.4 Chi-squared

The chi-squared distribution with k degrees of freedom is the distribution of the sum of k
independent standard normal random variables. That is, if Xi ∼ N(µ = 0, σ2 = 1), then the
overall random variable X =

∑
iX

2
i will be χ2-distributed. This distribution turns out to be:

p(x; k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

It can be shown that E[X] = k and V [X] = 2k.
Suppose we have 2 degrees of freedom, X1 and X2, both of which are standard normal

distributed. For each of these, there is a 68.3% probability that they are between −1 and 1,
i.e. within 1σ of µ (where σ and µ refer to the individual normal distributions here). However,
it is not true to say that the probability that

√
X2

1 +X2
2 is within σ of µ is 68.3%. It is not

even true to say that the probability is 0.6832 = 0.466, as one might intuitively think. We are
integrating over a disk X2

1 +X2
2 ≤ 1, so the probability is instead

P (X2
1 +X2

2 < 1) =

∫ 1

−1
p(x1) dx1

∫ √1−x21

−
√

1−x21
p(x2) dx2 =

√
2

π

∫ 1

0

e−x
2
1/2 erf

(√
1− x21

2

)
dx1

which comes out to about 0.393. Replacing the 1s in the integration bounds with a2 tells us
the probability of

√
X2

1 +X2
2 being within aσ of the origin X1 = X2 = 0.

1.6 Generating Samples

There are two main ways of generating samples from a known distribution.

1.6.1 Accept-Reject

The simplest method is the accept-reject method. First, find the maximum value of the pdf
pmax; we do not require the distribution to be normalised for this method to work. Then,
generate two random numbers, xi and yi, from the uniform distributions [L,U ] and [0, pmax].
Calculate the value of the distribution at xi, p(xi). The sample xi is accepted if p(xi) < yi,
and rejected otherwise. This means that xi is proportionally more likely to be accepted if it is
in regions where the pdf is higher, and as a result the accepted xi are samples selected from
the distribution. Figure 1 demonstrates the accept-reject method for a binomial distribution,
though this method works equally well for continuous distributions.

1.6.2 Inverse CDF

The cdf for a random variable X is a mapping from the range which X can come from, to the
interval [0, 1]. Conversely, the inverse cdf, known as the percentage point function (ppf), is a
mapping from [0, 1] to the range of possible outcomes for X. The gradient of the cdf is the
pdf, so the cdf will be steeper for more probable x. The ppf will therefore be flattest where
it takes the distribution’s most probable values. Figure 2 shows this for a normal distribution
with µ = 2, σ = 3. The ppf is flattest around a value of 2, which is the most likely region of
outcomes in the pdf.

We can generate samples from a distribution in the following way. Sample first from a
uniform distribution on [0, 1]. Then feed those uniform samples into the ppf of the distribution
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Figure 1: The accept-reject method for generating samples from a binomial distribution, with
n = 20 and p = 0.3.

Figure 2: The cdf and pdf of a normal distribution, and the corresponding ppf.
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in question. This will yield random samples from the distribution, because more of the uniform
samples will be around the flatter regions of the cdf – that is, the most likely regions of the
pdf.

This method does however require knowing the ppf, which is sometimes difficult to obtain,
especially analytically.

1.7 Central Limit Theorem

For a series of samples of size N independently drawn from any distribution, the
distribution of the sample sum, and hence the sample mean, tends towards a
normal distribution as N →∞..

Proof. Consider a set of N random variables {Xi} drawn from some distribution with mean
µ and standard deviation σ. The mean is X̄ =

∑
iXi/N . Consider the variable

Y =
X̄ − µ
σ/
√
N

=
1√
N

N∑
i=1

Xi − µ
σ

It can easily be shown that E[Y ] = 0 and V [Y ] = 1. The characteristic function of Y is
ϕY (t) = E

[
eitY
]
. and

eitY = exp

(
i
t√
N

N∑
i=1

Xi − µ
σ

)
=

N∏
i=1

exp

(
i
t√
N

Xi − µ
σ

)
= exp

(
i
t√
N

X − µ
σ

)N
where in the final step we use the fact that the Xi are identically distributed. The exponential
is then the characteristic function of Z = (X − µ)/σ, stretched by a factor

√
N . Now for this

variable, clearly E[Z] = 0 and V [Z] = 1, so E[Z2] = 1. As such, the characteristic function
for this variable is given by ϕZ(t) = 1 + it(0) + 1

2
(it)2(1) + O(t3) = 1 − 1

2
t2 + O(t3). The

characteristic function of Y is then given by:

ϕY (t) =

(
1− t2

2N
+O

(
t3

N3/2

))N
= 1− 1

2
t2 +O

(
N−1/2

)
= e−t

2/2 +O
(
N−1/2

)
which of course tends to e−t

2/2 as N → ∞. Now for the standard normal distribution, the
characteristic function is∫ ∞

−∞
eitx

1√
2π
e−x

2/2 dx =
1√
2π

∫ ∞
−∞

eitx−
1
2
x2 dx =

1√
2π
e−t

2/2

∫ ∞
−∞

e−
1
2
(x−it)2 dx = e−t

2/2

Now two distributions with the same characteristic function are the same, because the charac-
teristic function can be inverted to give the original distribution. Thus Y is standard-normal
distributed. Thus X̄ is normal distributed with mean µ and variance σ2/N . �
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2 Estimating Parameters

When repeating an experiment, we are sampling from an unknown distribution, about which
we can only make inferences based on the sample. This chapter looks at how to do that.

Estimators are functions used to estimate parameters θ of a distribution p(x; θ). Estimators
are functions of a sample {Xi} drawn from that distribution: Xi ∼ p(x; θ). An estimator of
a parameter θ is denoted θ̂. Ultimately, an estimator can be any function of the sample, but
some functions will be better than others. Three ideal properties of an estimator are:

• Consistency. An estimator is consistent if, as the sample size approaches infinity, the
estimator converges on the true value:

lim
N→∞

θ̂ = θ

• Unbiasedness. The bias of an estimator is the deviation of the expectation of the
estimator from the true value: b[θ̂] = E[θ̂ − θ]. An estimator is unbiased if b = 0 for any
N . An estimator can be biased yet consistent if limN→∞ b[θ̂] = 0

• Efficiency. If we use θ̂ to estimate θ on several samples, it is likely that θ̂ will vary around
the true value. An estimator is said to be efficient if its variance is as low as possible.
More precisely, there is a particular value of the minimum variance of an estimator (called
the minimum variance bound, discussed later), and an estimator is called efficient if its
variance is equal to that minimum possible value

A good estimator of the mean of a distribution is to use the arithmetic mean of a sample:

µ̂ =
1

N

N∑
i=1

Xi

This estimator is consistent1, unbiased (E[µ̂] = µ), and turns out to be efficient, as its variance
V [µ̂] = σ2/N turns out to be the minimum possible variance.

Estimating the variance of the sample, σ2, is more nuanced. Consider first the case where
we know the true mean µ. The estimator V̂ = 1

N

∑
(Xi − µ)2 is then unbiased, as E[V̂ ] =

1
N

∑
E
[
(Xi − µ)2

]
= σ2.

What if we do not know the true mean – how can we then estimate the sample variance?
We might think that a good estimator is V̂ = 1

N

∑
(Xi − µ̂)2 = 1

N

∑
(X2

i − µ̂2), where we now
use our estimator for the mean since we don’t know the true mean. However, this estimator
underestimates the true variance, as µ̂ is estimated from the sample itself, so the values in the
sample will naturally be unduly close to µ̂, by design of µ̂:

E[V̂ ] =
1

N

∑(
E
[
X2
i

]
− E[µ̂2]

)
=

1

N

∑(
V [Xi] + E[Xi]

2 − V [µ̂]− E[µ̂]2
)

=
1

N

∑(
σ2 + µ2 − σ2

N
− µ2

)
= σ2

(
1− 1

N

)
1Strictly, this assumes convergence in distribution – that is, as N → ∞ the sample approximates the true

distribution
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which underestimates the true variance by a factor (N − 1)/N , and is hence biased. Note that
as N → ∞, this factor tends to 1, so this estimator is at least consistent. We can make an
unbiased estimator by simply dividing by this factor:

V̂ =
1

N − 1

N∑
i=1

(Xi − µ̂)2

The correction from N to N − 1 is sometimes called Bessel’s correction, and this formula is
often called the sample variance ŝ2.

This estimate will not be completely accurate every time, and until N →∞ will itself have
some variance V [V̂ ]. This can be derived assuming that the deviations Xi − µ̂ are normally
distributed about 0 with standard deviation σ. In this case, V̂ is proportional to a sum of
squares of normal random variables, and therefore follows a scaled χ2 distribution, with N − 1
degrees of freedom (since we have used the sample to derive the quantity µ̂). χ2 distributions
from standard -normally distributed variables have a variance of 2k for k degrees of freedom.
Hence the sum here has a variance of 2(N − 1)σ4. Accounting for the factor of 1/(N − 1) at
the front of the sum, the variance of this estimator is thus:

V [V̂ ] =
2σ4

N − 1

That this goes to 0 as N →∞ makes V̂ a consistent estimator.

An estimator for the standard deviation is σ̂ =
√
V̂ . The variance of this estimator can be

calculated using the error propagation formula:

V [σ̂] =

(
∂σ̂

∂V̂

)2

V [V̂ ] =

(
1

2
V̂ −1/2

∣∣∣∣
σ̂=σ

)2
2σ4

N − 1
=

1

4

1

σ2

2σ4

N − 1
=

σ2

2(N − 1)

and so the error on the estimated standard deviation is σ/
√

2(N − 1).

2.1 Likelihood

When inferring parameters θ of a distribution p(x;θ) from a sample {Xi}, it is natural to
think about how likely that sample was to occur for various different values of θ. This will be
a function of the parameters θ, and is called the likelihood function. It is given by

L(θ) =
N∏
i=1

p(Xi;θ) = p(X;θ)

where X = {X1, X2, . . . , XN}. The likelihood is not technically a pdf, as the parameters θ are
not, strictly speaking, random variables.

A natural way of estimating the parameters θ is to find the θ which maximises the likelihood
function L – this is called the maximum likelihood method. Dropping to one parameter θ for
notational convenience, this means that the estimator θ̂ is the value of θ where ∂L/∂θ = 0.
The product above sometimes makes the differentiation awkward (and computationally can
result in stupidly small numbers for large samples), so we typically instead minimise lnL.
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2.1.1 Minimum Variance Bound

The Fisher score S(θ) is the partial derivative

S(θ) =
∂ lnL
∂θ

The score is therefore 0 at the maximum-likelihood estimate θ = θ̂ML. We can show that θ̂ML

is an unbiased estimator by showing that the expected value of S(θ) is 0:

E[S(θ)] =

∫
∂ ln p(X; θ)

∂θ
p(X; θ) dX =

∫
1

p(X; θ)

∂p(X; θ)

∂θ
p(X; θ) dX

=
∂

∂θ

∫
p(X; θ) dX =

∂

∂θ
1 = 0

where we assume that the distribution is normalised for all values of θ.
The Fisher information I(θ) = V [S(θ)] is the variance of the Fisher score. We just showed

that E[S] = 0, so we have

I(θ) = E[S2] = E

[(
∂ lnL
∂θ

)2
]

which, incidentally, is non-negative. This can be rewritten using the lemma:(
∂ lnL
∂θ

)2

=
1

L
∂2L
∂θ2
− ∂2 lnL

∂θ2

and the fact that

E

[
1

L
∂2L
∂θ2

]
=

∫
1

p(X; θ)

∂2p(X; θ)

∂θ2
p(X; θ) dX =

∂2

∂θ2

∫
p(X; θ) dX =

∂2

∂θ2
1 = 0

Hence

I(θ) = E

[(
∂ lnL
∂θ

)2
]

= −E
[
∂2 lnL
∂θ2

]
The Fisher information turns out to be the inverse of the minimum variance of θ̂ML:

⇒ V
[
θ̂ML

]
≥ I(θ)−1 = E

[(
∂ lnL
∂θ

)2
]−1

= −E
[
∂2 lnL
∂θ2

]−1
Apparently as N →∞, this tends to an equality. A general estimator θ̂ is said to be efficient
if it has a variance equal to this minimum. Also apparently, in the N →∞ limit, the estimate
will tend to a normal distribution, centred on the true value θ∗, and with the above variance:

θ̂ML ∼
1√

2πVMVB

exp

[
−

(
θ̂ML − θ∗

)2
2VMVB

]
where VMVB is the minimum variance bound above. As such, if we calculate θ̂ML for lots of
samples from the same distribution, we will find a normal distribution. Typically we instead
look at −2 lnL, which will look like:

−2 lnL = ln (2πVMVB) +

(
θ̂ML − θ∗

)2
VMVB
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which is a quadratic in θ̂ML. This quantity – rather than L itself – is useful for calculating
uncertainties: to find the 1σ error, one can simply find where −2 lnL goes above its minimum
value by 1; to find the 2σ error, look at where it goes above its minimum value by 4; etc.

For multiple dimensions, the covariance of two ML-estimated parameters tends to

cov(θ̂ML,i, θ̂ML,j)→ −E
[
∂2 lnL
∂θi∂θj

]
and tends to a multivariate normal distribution as N →∞.

2.2 Variations on the Likelihood

2.2.1 Profile Likelihood

If we want a 1-dimensional likelihood function for a single parameter λ in a multiparameter
distribution, for example to quote 1D errors, this becomes more difficult if the likelihood
covaries with multiple parameters, i.e. if the above is non-zero. In such a case, one could
slice through the multidimensional Gaussian (to get the conditional probability), or integrate
over the other dimensions (marginal probability), but apparently to preserve the property of
−2 lnL going up by 1 at ±1σ, up by 4 at ±2σ etc., one should instead take the profile likelihood
function L∗(λ). For each value of λ, one minimises the full likelihood L with respect to all
the other parameters, subject to this value of λ being fixed. Naturally, for the maximum-
likelihood value of λ = λML, the profile likelihood L∗ will be at a maximum, otherwise we
will have found another maximum to the overall likelihood function L. And for the value of
λ where −2 lnL∗ = min (−2 lnL∗) + n2 = min (−2 lnL) + n2, we will have found a value of λ
which is ±nσλ away from the maximum-likelihood value but where all the other parameters
nonetheless maximise the likelihood as far as possible.

2.2.2 Extended Maximum Likelihood

It is possible, particularly in particle-physics-based counting experiments, that the number of
observations N is a (Poisson-distributed) random variable that is effectively another datum
along with X – we then don’t know N in advance, and the mean number of events ν is another
parameter. We have p(N ; ν) = νNe−ν/N !, so the total likelihood p(X, N ;θ) becomes:

L(θ) =
νNe−ν

N !

N∏
i=1

p(Xi;θ)

where the parameters θ now include ν.

2.2.3 Binned Maximum Likelihood

For a very large sample size, the product in the definition of L (or the sum in lnL) will get
outrageously large. In such cases, it is quicker to bin the samples Xi, into bins [xLb, xUb], where
b runs from 0 to B, the number of bins. In this way, the “samples” are no longer the Xi, but
the Nb, the number of Xi which are in the bin b; we have

∑
bNb = N . These samples are

Poisson distributed, about a mean λb given by the expected number of events in that bin:

λb =

∫ xUi

xLb

p(X;θ) dX = F (xUi)− F (xLi)

13



which we note depends on the parameters θ. The binned likelihood function is then:

L(θ) =
B∏
b=1

λNb
b e−λb

Nb!

where the dependence on θ lies in λb. The advantage of the binned likelihood function is that the
product is now over only B terms rather than N � B, and calculation of maximum likelihood
parameters can be sped up by significant factors. A disadvantage is that it can be difficult
to calculate λb, as cdfs can be hard to calculate. One can estimate the cdf by numerically
integrating, or estimating the integral as the pdf’s value at the bin centre multiplied by the
bin width, though this will lead to a bias.

2.3 Least-Squares Estimation

The least-squares method of estimation applies to fitting a parametrised curve to some (Xi, Yi)
data. For some model y = f(x;θ), we wish to minimise:

χ2 =
N∑
i=1

(Yi − f(Xi;θ))2

It is likely that the Yi values have some uncertainties σi, and to be more accepting of deviations
from the model value we weight each contribution by σ−2i , minimising instead:

χ2 =
N∑
i=1

(
Yi − f(Xi;θ)

σi

)2

We can show that minimising χ2 is the same as maximising the likelihood function of some
normally-distributed data Yi ∼ N(f(Xi;θ), σ2

i ). For such data, the likelihood is given by:

L(θ) =
N∏
i=1

1√
2πσ2

i

exp

[
−1

2

(
Yi − f(Xi;θ)

σi

)2
]

⇒ −2 lnL(θ) =
N∑
i=1

(
Yi − f(Xi;θ)

σ2
i

)2

+ const. = χ2 + const.

Now because if we are adding lots of data together the resulting quantity tends to a Gaussian
distribution, this means that for any large dataset, −2 lnL(θ) approaches a χ2 distribution
(albeit offset by a constant). The number of degrees of freedom is the number of observations
in the χ2 sum minus the number of free parameters being fitted (dimθ):

k = N − dimθ

Now the mean of a χ2 distribution with k degrees of freedom is k, so we expect a χ2 value of
roughly k. If much higher, the model is a poor fit to data; if much lower, we are overfitting.

An broad example use case is where we have a large sample {Xi} which we put into bins
b, fitting to a distribution yb = f(xb;θ), where xb is the x-value in the centre of bin b, for
example. In this case, the data Yb are the number of events Xi that are in bin b, and because
binning is effectively a Poisson process the errors σb =

√
Yb.
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2.4 Method of Moments

The method of moments may be a quicker approach than maximum-likelihood or least-squares
estimation. It estimates parameters using the fact that, for large samples, sample statistics
will tend to their true values. For example, the mean of a distribution with given parameters
θ is µ(θ) =

∫
Xf(X;θ) dX. For a large sample size, we can calculate the sample mean X̄ and

say that this will be close to µ(θ). If the model only has one parameter (θ = θ), then we can
simply invert this to estimate

θ̂MOM = µ−1(X̄)

where the function µ(θ) comes from the parametrised integral and X̄ comes from the sample.
For the case of multiple parameters, we include higher-order moments. We find µ2(θ) =∫
X2f(X;θ) dX, and the sample estimate µ̂2 (for example, X̄2), giving two equations in θ; if

dimθ = 2, these can be solved to give θ1 and θ2. If θ is more parameters, we keep going to
higher orders until we find an invertible set of equations to find θMOM.

Alternatively, rather than using higher order moments, we can use higher order central
moments, for example σ2.

2.5 Confidence Intervals

If the probability that the true value of θ lies between θL and θU is γ, then [θL, θU ] is a confidence
interval of θ with confidence level γ. Often we choose γ = 0.683 or 0.954, corresponding to
1σ or 2σ from the mean of a Gaussian distribution. In a frequentist sense, we are saying that
the true value θ0 (which exists, somewhere!) is not known to us but we know where it could
be and with what probability. If the true value is really within the confidence interval in a
fraction γ of experiments, the interval is said to cover ; otherwise to overcover or undercover.
Overcoverage is a confidence interval which is too large, being more conservative, but failing
to claim discoveries where they might exist and hence losing statistical power. Undercoverage
is more dangerous, as it can lead to false discoveries.

Confidence intervals can be constructed in many different ways. Perhaps the most natural
is the Neyman-Pearson interval. Suppose we are estimating a parameter θ from a single datum
X. We first construct the likelihood, which here is just p(X|θ). For each θ, we then find the
values of XL and XU such that

p(X < XL|θ) ≡
∫ XL

L

p(X|θ) dX =
1− γ

2
=

∫ U

XU

p(X|θ) dX ≡ p(X > XU |θ)

where L and U are the lowest and highest values that X can take. In other words, assuming
that value of θ, X is equally likely to be below XL as above XU , and has a probability γ of
being in between. In the space of X and θ, we can scan along the θ axis and construct this
[XL, XU ] range (called the acceptance region) for each value of θ, drawing out a confidence belt
in X-θ space. Now, when we get some data X0, we flip this over, and the confidence interval
for θ is the intersection of X = X0 and the confidence belt constructed above.
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2.5.1 Intervals near Physical Boundaries: the Feldman-Cousins Interval

Suppose θ is some sort of mass. We know θ > 0, but if we come to the conclusion that θ = 2±3,
this is kind of unsatisfying at the lower end. Conversely, if we cut things off at 0, we might
write θ = 2+3

−2, but then this does not cover: θ will be between 0 and 5 in less than a fraction γ
of experiments. This might emerge from a likelihood function L(θ) being not very different at
0 than at θ̂ML, such that the parabola of −2 lnL around θ̂ML might not reach 1 at all between
θ = 0 and θ = θ̂ML. How would we then give a lower 1σ error on θ?

The Feldman-Cousins interval resolves this, constructing a confidence belt as follows:

1. For each X, calculate the maximum-likelihood value of the parameter, θ̂ML. It may
be that this value is outside the boundary, in which case set the best estimate to the
boundary edge: if we require θ > 0 but for some X we have θ̂ML < 0, set instead
θ̂ = 0. This will draw out a maximum-likelihood-curve in X-θ̂ space, which may hug the
boundary for some values of X.

2. Flipping things over, consider a fixed value of θ. Along that line, calculate as a function
of X, the quantity

R =
p(X|θ)
p(Xθ=θ̂|θ)

where Xθ=θ̂ is the value of X at which, for this value of θ, θ = θ̂: that is, the point on the

maximum-likelihood-curve at this value of θ̂. This quantity R will of course be equal to
1 at X = Xθ=θ̂, but will generally be less than 1, as other values of X are by definition
less probable. Indeed, R should monotonically decrease in both directions, away from
X = Xθ=θ̂.

3. A range in X is constructed around Xθ=θ̂ for a given θ as follows. It is most intuitive to
think in the discrete-X case, but the continuous case naturally follows.

(a) Take the two X-values on either side of Xθ=θ̂, as the initial interval.

(b) Then, check the two points just outside the interval: expand the interval to include
whichever has the highest R.

(c) Then check the two points just outside the new interval (one of which will have
previously been rejected), and again include whichever has the higher R.

(d) Continue expanding the interval in this way, until we achieve the required coverage,
finding XL and XU such that ∫ XU

XL

p(X|θ) dX = γ

In this way, a confidence belt is again constructed in X-θ space, and hence confidence intervals
can be calculated for any data X that come in. The result is a smooth confidence belt, which
covers the required confidence interval essentially by definition. The Feldman-Cousins intervals
are, however, usually quite slow to calculate.
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3 Goodness of Fit and Hypothesis Testing

Once we have fit the parameters of a model to our data, we wish to evaluate the fit, quantifying
how well the model fits the data, perhaps in comparison to another model. This is the job of
test statistics, which are functions T of the model and the data. An example of a test statistic
is the χ2 statistic, which is smaller the better-fitting the model is.

Although T provides a quantifier of the goodness of fit of a model to data, the quantity
itself is essentially meaningless if it is not known how T is distributed. For any test statistic
T , another equally good test statistic is T + 17, but neither really means anything in isolation.
If it is known how T is distributed, we can work out how likely it was that our data and model
gave the value it did (or of something “more extreme”), converting the arbitrary scale of T ’s
distribution into a probability. If we have some hypothesis H, corresponding to a particular
model attempting to describe a dataset, then if H is true we can write the probability of
obtaining a test statistic T = T0 or more extreme as:

p =

∫ ∞
T0

P (T |H) dT

where we assume “more extreme” for this test statistic corresponds to larger values of T . This
is called the p value. If p is very small, then the model poorly describes the data, and a different
model is probably better. If p is very close to 1, we’re probably overfitting.

Take T = χ2 as an example, suppose we have a model and dataset which give χ2 = χ2
0. How

well does our model fit the data? In other words, what would be the probability of obtaining
this good a fit, or worse? Well it would be

p =

∫ ∞
χ2
0

p(χ2; k) dχ2 = 1− F (χ2
0; k)

If p is very low, then the χ2
0 is quite high, suggesting that the fit is not very good. If p is

close to 1, then χ2
0 is close to 0, and the fit is suspiciously good. If we have a model H which

accurately describes the data, we would have χ2
0 ≈ k, so we would have a p-value of 1−F (k; k),

which seems to be between about 0.3 and 0.5 depending on the number of degrees of freedom.
We see that for a χ2 test, even though H accurately describes the data the p-value is not
particularly low: certainly not low enough to claim some kind of discovery. This speaks to the
low statistical power of the χ2 test statistic – even for a model which accurately describes the
data, the natural tendency for data to vary (and hence each contribution to the χ2 to be on
average 1) means that we would probably not be able to detect a real effect. Better statistical
power comes from comparison of two hypotheses.

3.1 Hypothesis Tests

This typically involves considering a null hypothesis H0, which hypothesises that the data
occurred due to chance alone: the “default” option. This is in contrast to the alternative
hypothesis H1, which states that the data occurred due to some new, interesting effect. To judge
which of these hypotheses to accept or reject, we employ a test statistic T whose distribution
P (T ) is known under both H0 and H1, being P (T |H0) and P (T |H1): the null and alternate
distributions. We can draw out these two distributions, which will generally have some overlap.
When we get some data X, we feed that into the test statistic under the assumption of H0, to
obtain a test statistic T0.

17



Suppose that the alternate hypothesis corresponds to larger test statistics, so that the al-
ternate distribution lies to larger T than the null distribution. We can then find the probability
of having obtained a test statistic at least as extreme as T0 under the null hypothesis, which
would be:

α =

∫ ∞
T0

P (T |H0) dT

If the data are entirely consistent with H0, we will find α ≈ 1; if something very un-H0-y has
happened, then we will see a very small α. α is also the probability that we would unjustly
reject H0, i.e. the probability that we see a very high test statistic and think that the null
hypothesis is false (a Type I error; loss).

Instead, we might see quite a low T0 and unjustly accept H0 despite it not being true and
H1 being a better description of the data. The probability of this happening is

1− β =

∫ T0

−∞
P (T |H1) dT

(This is a Type II error; contamination).
What makes an ideal test statistic? We want a test statistic to be able to distinguish

between two hypotheses, so in an ideal world there would be no overlap between the null and
alternate distributions, and the measured value of T0 would tell us instantly which hypothesis
is true. In reality, the measured value of T0 will probably somewhere in the overlap between
P (T |H0) and P (T |H1), but to reduce the probability of this happening it would be nice if our
two distributions had as little overlap as possible. The best test statistics separate the null
and alternate distributions as much as possible. For the case where H0 is a special case of the
alternate hypothesis space (for example, with one of the H1 parameters set equal to 0), the
Neyman-Pearson lemma states that the most powerful test statistic between two hypotheses
is the log-likelihood-ratio:

T = −2 ln

(
L(X|H0)

L(X|H1)

)
The numerator must be lower than the denominator, as H0 is a special case of H1, so we
have strictly T > 0. If the data are very far away from H0, then the numerator will be
low, the fraction will be much less than 1 and T0 will be very large. For similar reasons to
the relation between −2 lnL and χ2 seen in section 2.3 (Wilks’ Theorem), this test statistic is
distributed as a χ2 distribution with 1 degree of freedom (assuming there is only one parameter
which differentiates H0 and H1). When we get some data, we can evaluate the test statistic T0
with the data, the null hypothesis, and the alternative hypothesis (in particular, the alternative
hypothesis with the best-fitting value of the parameter), and find the probability that T0 would
be that large; this probability is

p =

∫ ∞
T0

P (χ2; 1) dχ2 = 1− F (T0; 1)

This probability p is the probability that the test statistic could be so high under the null
hypothesis. If p is very low, we can reject the null hypothesis with a confidence of 1− p; there
is only a probability p that doing so would be mistaken.

For some reason, people sometimes convert the p-value into a Z-score, corresponding to the
number of standard deviations away from the mean of a normal distribution outside which we
would get a probability p. A higher Z-score means our data were more unlikely under the null
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hypothesis. However, one should be careful because sometimes the Z-score is being taken as
a one-sided test (for example, if we are testing whether or not a signal exists) rather than a
two-sided test (like testing the unconstrained value of some parameter), which would give a
lower Z-score.

3.2 Limit Setting

Imagine we are searching for a signal against a background. It may turn out that our signal is
not very big, and has a size consistent with 0 at some confidence level, so the signal may not
actually exist. We can then set an upper limit for the size of the signal, at some confidence
level.

The procedure for obtaining an upper limit at a particular confidence level is as follows.
For a given value of the signal size, one calculates the log-likelihood ratio (or some other test
statistic, though this will be the most powerful) of there being a signal of at most that size,
compared to the null hypothesis of there being no signal at all. One then calculates the p-
value of this test statistic; if the log-likelihood ratio is used then this will be ∼ χ2, with the
number of degrees of freedom depending on how many extra dof the inclusion of a signal gives
to the probability distribution. The signal size is then adjusted up or down until the p-value
corresponds to the confidence level desired: if we want an upper limit at 95% confidence, we
vary the signal size until we reach the test statistic with a p-value of 0.05.

If the overall sensitivity of an experiment is quite low, there might be no possible data
which would cause us to reject the null hypothesis. This might occur when the test statistic
is distributed similarly under alternate hypothesis and the null hypothesis, so no value of the
test statistic would be able to distinguish between the two at a given confidence level. A way
of mitigating this is the CLs method, which alters the critical p-value by an amount depending
on the null-hypothesis test statistic distribution:

pCLs =
P (T > T0|H1)

P (T > T0|H0)

whereas previously we would just be looking at the numerator. By dividing by P (T > T0|H0),
we are increasing the p-value we are reporting, making this method deliberately conservative.

3.3 Resampling Methods

We will always want a bigger sample, but taking large samples directly from the distribution is
sometimes infeasible and we have to make the best of the sample we have. Resampling consists
of augmenting that sample, or constructing multiple samples from it.

3.3.1 Jackknife resampling

Suppose we are estimating a parameter θ from some data {X1, X2, . . . , XN}. We might have
come up with an estimator function θ̂ = θ̂(X1, X2, . . . , XN). Using a leave-one-out procedure,
we can obtain N different estimates for θ by calculating θ̂−1 = θ̂(X2, X3, . . . , XN), then θ̂−2 =
θ̂(X1, X3, . . . , XN), right the way up to θ̂−N = θ̂(X1, X2, . . . , XN−1). Rather than using the
estimator function θ̂ on all N data, we can instead make a jackknifed estimate θ̂J by taking
the mean of these leave-one-out estimates:

θ̂J =
1

N

N∑
i=1

θ̂−i
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Slight detour: if we estimate a true parameter θ with a consistent estimator θ̂N on N data,
then limN→∞(θ̂N − θ) = 0. We can thus write the expectation of θ̂N as a power series in 1/N :

E[θ̂N ] = θ +
a1
N

+
a2
N2

+ . . .

where the coefficients ai will depend on the estimator θ̂N . If we are only using N − 1 data
points, as with the θ̂−i above, then the expectation will be

E[θ̂N−1] = θ +
a1

N − 1
+

a2
(N − 1)2

+ · · · = E[θ̂−i]

Now the jackknifed estimate θ̂J is 1/N times the sum of N of these θ̂−i quantities, all of which
will have the same expectation and thus E[θ̂J ] is also given by the above. We can therefore
construct a quantity which is only biased to order N−2 rather than N−1:

E
[
Nθ̂N − (N − 1)θ̂J

]
=
(
Nθ + a1 +

a2
N

+ . . .
)
−
(

(N − 1)θ + a1 +
a2

N − 1
+ . . .

)
= θ +

a2
N2

+O(N−1)

We therefore write the unbiased jackknife estimator as:

θ̂J = Nθ̂N − (N − 1)θ̂J

3.3.2 Bootstrapping

Having taken a sample of size N from the underlying distribution, we can generate further
samples of size N by sampling with replacement from the original sample. For instance, if
the original sample was {1, 5, 2, 3, 4}, a bootstrapped sample might be {5, 2, 5, 3, 3}. The
representativeness of the bootstrapped samples are, however, entirely dependent on the repre-
sentativeness of the original sample.

One reason this is useful is if there is a parameter that we are estimating from the sample,
we can generate a distribution for that parameter by estimating it for many bootstrapped
samples. Parametric bootstrapping is useful where we have some model for the underlying
distribution, and consists of the following procedure. We get a sample, and fit the model to the
data in that sample. This gives us a point estimate for each of the parameters of the model.
We then generate lots of bootstrap samples from the original sample, and for each of these
bootstraps we re-fit the model, obtaining a new set of parameters. This gives a distribution
for each of the parameters, where the mean should be roughly centred on the point estimates
obtained by fitting the model to the original sample, and the spread gives an indication of how
sensitive we are to that parameter.
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