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1 Periodic Structure

1.1 Bravais Lattice

The structure of a crystal is the convolution of a Bravais lattice and a basis.
The basis consists of the simplest repeating unit of atoms – for example,
an NaCl unit; the Bravais lattice is a repeating 3D array of δ functions, at
locations known as lattice points. There are 14 types of Bravais lattices, of
which three concern us: Primitive cubic (P), Body-centred cubic (I or BCC)
and Face-centred cubic (F or FCC).

Any repeating unit in a crystal is called a “unit cell”; it is endowed the
description of “primitive” if it contains just one lattice point. Of the above,
only the P lattice (suggestibly) is primitive; BCC and FCC contain 2 and 4
lattice points resp. The Wigner-Seitz construction generates a primitive unit
cell in any crystal structure.

Unit cells are defined by three basis vectors a, b, and c, so that any
point r in the crystal may be described as r = ua + vb + wc, or in the form
[u v w] as favoured by crystallographers. In this notation, negative values (e.g.
a− b− 2c) are denoted with overbars: [1 1 2]. In many cases, lots of vectors
and directions are related to each other by symmetry: for instance, in the
P lattice, the vectors [1 0 0], [0 0 1], [0 1 0] etc. are symmetrically equivalent,
and the set is denoted 〈1 0 0〉.

A set of parallel planes in a crystal are described using Miller indices
(h k l). Consider the first such plane away from the origin: the indices are
determined by where this plane intersects the three crystallographic axes.
For instance, if the plane intersects the axes at a,b/2, c/3, then the set of
parallel planes have Miller indices (1 2 3). As with vectors in general, there
may be many symmetrically equivalent planes; the set is denoted {h k l}. To
summarise:
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� [h k l] – a vector

� 〈h k l〉 – a set of symmetry-related vectors

� (h k l) – a plane

� {h k l} – a set of symmetry-related planes

1.2 Reciprocal Lattice

The Fourier transform of the Bravais lattice is the reciprocal lattice. Any
function that can represent a property of the crystal must have a periodicity
so that on translating from r → r + [h k l] with h, k, l ∈ Z, the function is
unchanged. A basis for the reciprocal lattice vectors is:

A = 2π
b× c

a · b× c
B = 2π

c× a

a · b× c
C = 2π

a× b

a · b× c

In this way, any crystallographically periodic function can be expressed as:

f(r) =
∑
h,k,l

Fhkle
iGhkl·r

where Ghkl = hA+kB+ lC, are often referred to as “G-vectors”; these form
the reciprocal lattice. This has the correct periodicity because Ai ·aj = 2πδij
so if r is a linear combination of the lattice vectors ai, then the exponent will
be a multiple of e2πi = 1. Ghkl is perpendicular to the (h k l) planes.

1.3 Diffraction Experiments

X-rays and thermal neutrons beams have the right wavelengths to diffract
from a crystal lattice. When a wavefront of wavevector ki is incident on
an atom, it generates secondary wavelets. For a strong resultant beam of
wavevector kf , the phase difference between the secondary wavelets from
two adjacent atoms (easily shown to be (kf − ki) · r where r is the vector
between the two atoms) should be a multiple of 2π. As such, kf = ki + Ghkl

for some h, k, l.
However, conservation of energy adds the further requirement that |kf | =

|ki|, so the addition of Ghkl must not change the magnitude of the k vector
– there is an isosceles triangle formed between the ki, kf and Ghkl. This is
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best visualised using the Ewald sphere construction. Often there is no such
Ghkl, and so there will be no diffraction.

Diffraction experiments are either single-crystal, or powder. Single-crystal
diffraction is used to determine structures: the beams form spots, with angles
and intensities relating to the crystal structure. Powder diffraction uses a
sample of many small crystals in all possible orientations: the beams form
rings, whose angles may identify phases or structure changes.

2 Phonons

2.1 Monatomic Crystals

It is hard to describe the vibrational motion of the atoms in a crystal atom-
by-atom, so a normal modes approach is used; this should be done quantum-
mechanically, but apparently a classical analysis gives the same answers. The
energy of each normal mode is (n+ 1/2)~ω where n is said to be the number
of phonons in the mode.

By considering the forces in a 1D harmonic chain with interatomic sepa-
ration a, and positing a longitudinal displacement form un = u0e

i(nqa−ωt), we
arrive at the dispersion relation:

ω = 2ω0

∣∣∣sin(qa
2

)∣∣∣
where ω0 =

√
α/m. This dispersion relation is only meaningfully defined for

q ∈ (−π/a, π/a) (the First Brillouin Zone), as any larger wavevectors would
have a phase difference of more than φ > 2π between neighbouring atoms,
which is totally equivalent to a phase difference of φ − 2π ∈ (−π, π), as it
doesn’t matter what the wave looks like between the atoms as there’s nothing
there. Thus a phonon with wavevector q is entirely equivalent to one with
wavevector q + nGhkl. As always, the velocity of a phonon is given by ∂ω

∂q
.

The long-wavelength (low-q) limit gives:

lim
q→0

ω = ω0aq ⇒ v → ω0a

which it turns out is the same as when one considers the speed of sound in
a homogeneous material – for long wavelengths the atomic structure of the
material is inconsequential.

For wavelengths near the edge of the Brillouin zone, the gradient of the
dispersion relation approaches 0 and a standing wave is achieved as the phase
difference between neighbours reaches π.
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Discrepancies between the theory above and experiment can be due to:
anharmonicity of intermolecular forces; next-nearest-neighbour interactions.

One can assign a momentum ~q to a phonon, which enables explanations
of coalescence and splitting of phonons. It is possible for a coalescence to
produce a phonon with a q outside of the 1BZ, so one ought to subtract
G vectors until it returns to the 1BZ. In this sense, “crystal momentum” is
defined only up to ~ times a number of G vectors.

If one probes a crystal with a thermal neutron, it can excite or annihilate
a phonon. One can then use the changes in momentum (~q+nG) and energy
(~ω) of the neutron to analyse the phonon properties.

2.2 Diatomic Crystals

For a crystal with two atoms of mass mA,mB < mA, the analysis leads to
the dispersion relation:

ω =

√
α

mAmB

[
mA +mB ±

√
(mA +mB)2 − 4mAmB sin2 (qa)

]
Most notably, there are now two branches – the higher frequency branch is
termed the optical branch as it interacts strongly with EMR if the crystal is
polar; the lower branch is termed the acoustic branch, as it corresponds to
sound waves in the low-q limit. In addition, the size of the Brillouin zone has
halved, as the periodicity has become 2a; the appearance of two branches
can be understood using the concept of “backfolding”.

In different regimes, we have:

lim
q→0

ωo →
√

2α

µ
where µ ≡ mAmB

mA +mB

lim
q→0

ωa →
√

2α

mA +mB

qa ⇒ lim
q→0

v →
√

2α

mA +mB

a

lim
q→π/2a

ωo →
√

2α

mB

lim
q→π/2a

ωa →
√

2α

mA

On solving for the different amplitudes of oscillation, we see that another
difference between optical and acoustic modes is: for optical modes, neigh-
bouring atoms move out of phase; for acoustic modes they are in phase. At
the zone boundary, we end up with only one mass moving (the one present
in the limiting form of ω), and the other stationary.
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For 3D systems, the above all still applies, but transverse oscillations now
also exist. These “T” modes are described in a similar way to the “L” modes
we have considered, but with effectively a lower α and thus lower frequencies;
the dispersion relations are usually similar in form though.

3 Thermal Properties

3.1 Heat Capacity

The average energy stored in a single mode of frequency ω at temperature T
is given by Planck’s formula:

〈E〉 =
~ω

eβ~ω − 1

where β = 1/kBT . The total internal energy of the crystal is then given by:

U =
N∑
i

~ωi
ebeta~ωi − 1

→
∫

~ω
eβ~ω − 1

dN =

∫
~ω

eβ~ω − 1
g(ω) dω

where g(ω) the “density of states”, is defined by g(ω) dω being the number of
states with frequencies on [ω, ω+dω). This is estimated using Debye Theory,
discussed below.

Suppose the overall crystal has dimensionsX, Y, Z, and that the boundary
conditions are “reflecting”. This gives that the possible values of q are:

q =
(nxπ
X

,
nyπ

Y
,
nzπ

Z

)
where (nx, ny, nz) are all positive. Each possible value of q thus takes up
a volume π3/V in q-space, where V = XY Z is the volume of the crystal.
Given that the number of states with each value of q is 3 (one longitudinal,
two transverse), the number of states with a wavevector magnitude between
q and q + dq is:

dN = 3
4πq2 dq /8

π3/V
=

3V

2π2
q2 dq

and so the number of states with a frequency between ω and ω + dω is:

dN =
3V

2π2
q2

dq

dω
dω =

3V ω2

2π2v3s
dω ⇒ g(ω) =

3V

2π2v3s
ω2
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where ω = vsq defines sort of the speed of sound [Debye assumes this to
be independent of frequency, and related to the transverse and longitudinal
speeds by:

3

vs
=

2

vT
+

1

vL

.] We are now in a position to integrate the earlier expression to obtain U ,
but we should not integrate up to infinity, as there are only 3N modes in
the entire crystal. The Debye frequency ωD is the highest possible phonon
frequency:

3N ≡
∫ ωD

0

g(ω) dω =
V

2π2v3s
ω3
D ⇒ ωD =

(
6π2v3sN/V

)1/3
=
(
6π2v3sn

)1/3
We then have:

U =

∫ ωD

0

~ω
e~ω/kT − 1

3V

2π2v3s
ω2 dω =

3V ~
2π2v3s

∫ ωD

0

ω3

e~ω/kT − 1
dω

which isn’t very easy. The heat capacity C ≡ ∂U
∂T

is given by:

C =
3V ~

2π2v3s

∫ ωD

0

ω3

(e~ω/kT − 1)
2

~ω
kT 2

e~ω/kT dω

=
3V ~2

2π2v3skT
2

∫ ωD

0

ω4

(e~ω/kT − 1)
2 e

~ω/kT dω

=
3V ~2

2π2v3skT
2

k5T 5

~5

∫ θD/T

0

x4ex

(ex − 1)2
dx

=
V

6Nπ2v2s

(
kT

~

)3

9Nk

∫ θD/T

0

x4ex

(ex − 1)2
dx

= 9Nk

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx

where ~ωD = kθD; the the Debye temperature. This gives different results in
different regimes. At high temperatures the upper bound is small and so the
integrand is small over the whole integration range:

lim
T→∞

C = 9Nk

(
T

θD

)3 ∫ θD/T

0

x4

x2
dx = 3Nk

which is independent of temperature and was in fact known experimentally
before, as the Dulong-Petit Law. One could also see this as arising from the
fact that for high-temperatures the energy of each mode tends to kT , and
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there are 3N modes so U = 3NkT,C = 3Nk. For low temperatures, the
integral goes to infinity, apparently giving 4π4/15, so:

lim
T→0

C = 9NK

(
T

θD

)3
4π4

15
=

12π4

5
Nk

(
T

θD

)3

which is proportional to T 3, as experiment corroborates.
Discrepancies may arise from: high-ω modes with non-linear dispersion

relations; more complicated g(ω) forms.

3.2 Thermal Conductivity

The thermal conductivity κ of an insulator is given by the formula:

κ =
1

3
C 〈c〉 l

where C is the heat capacity, 〈c〉 is the average phonon speed, and l is the
phonon mean free path. The latter is limited by phonon scattering, which can
be due to: geometric scattering, off of impurities or boundaries (independent
of T ); phonon-phonon scattering, off of other phonons (only possible due to
anharmonicity, ∝ T−1 at high T ).

Phonon-phonon scattering can be normal or umklapp. Umklapp scatter-
ing occurs when the coalescence of two phonons brings the resultant phonon
outside of the 1BZ. After subtracting G-vectors to return to the 1BZ, the
resultant q is often in a completely different direction – umklapp scattering
causes strong randomisation of the phonons and reduces l. However, this
can only occur frequently if there are lots of phonons reasonably close to
the edge of the 1BZ in the first place (otherwise most will simply scatter
normally), and this is only the case at high temperatures. Therefore, as the
temperature decreases, the umklapp processes becomes less prevalent and
the conductivity actually rises above the T−1 asymptote.

As a result, a plot of κ against T often rises as T 3 for low temperatures
(due to C) and then falls onto a T−1 asymptote for higher temperatures (due
to l).

4 The Free Electron Model

Unlike previously, where we have been thinking about the motions of the
atoms in the crystal, we now move on to looking at what the electrons are
doing in a metal. This is reasonably well described by the free electron model,
which makes predictions about a wide range of properties of the metal, some
of which more accurate than others. The model assumes:
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� The nuclei create a uniform background potential

� There is no electron-electron repulsion

� The Pauli Exclusion Principle

As with the Debye theory, we begin by assuming a volume V = XY Z.
Using cyclic boundary conditions this time, the possible electron states are
then:

Ψ(x, y, z) ∝ sin

(
2πnxx

X

)
sin

(
2πnyy

Y

)
sin

(
2πnzz

Z

)
so we have:

k =

(
2πnx
X

,
2πny
Y

,
2πnz
Z

)
where nx etc can apparently each be negative as well, so all 8 octants of
k-space will be used. Each point in the k-space lattice has a volume 8π3/V
as before, and the PEP says that each k-state can be occupied by 2 electrons.
The number of electrons in states between k and k + dk is therefore:

dN = 2
4πk2 dk

8π3/V
=
V k2

π2
dk

The number of electrons in states between E and E + dE is then calculated
as follows:

E =
~2k2

2m
⇒ dE =

~2k
m

dk

⇒ dN =
V k2

π2

m

~2k
dE

=
mV

~2π2

√
2mE

~2
dE

=
V

2π2

(
2m

~2

)3/2√
E dE ⇒ g(E) =

V

2π2

(
2m

~2

)3/2√
E

The E1/2 dependence (specific to 3D crystals) will become particularly im-
portant. At T = 0, electrons will be filled in states of as low an energy (and
thus k) as possible while abiding by PEP. Let the maximum occupied k at
T = 0 be called kf , then we have:

N = 2
4πk3f/3

8π3/V
=
V k3f
3π2
⇒ kf =

(
3π2N

V

)1/3

=
(
3π2n

)1/3
where n is the electron density. We define the Fermi energy EF as the
highest-energy state occupied at absolute zero. This is simply given by:

EF =
~2k2f
2m

=
~2

2m
(3π2n)2/3
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4.1 Heat Capacity

For T > 0, however, it is not simply the case that the electrons will simply
be located in the lowest-energy states available to them. Rather, electrons
are distributed according to the Fermi-Dirac distribution: the probability of
a state of energy E being occupied at temperature T is:

pf (E;T ) =
1

1 + exp
(
E−µ
kT

)
where µ is the chemical potential, which only has a small temperature depen-
dence, and is the energy at which a state has a 50% chance of occupation.
The number of states between E and E + dE which are actually occupied is
therefore:

g(E)pf (E;T ) dE =
V

2π2

(
2m

~2

)3/2
√
E

1 + exp
(
E−µ
kT

) dE

The multiplication of pf (E;T ) effectively “smears” out g(E) within about
kT of µ. We finally then obtain:

Uel =

∫ ∞
0

Eg(E)pf (E;T ) dE =
V

2π2

(
2m

~2

)3/2 ∫ ∞
0

E3/2

1 + exp
(
E−µ
kT

) dE

From which we can obtain:

Cel ≡
∂U

∂T
≈ π2

2
Nk

T

TF

where TF , the Fermi temperature, is defined by kBTF = EF . Usually T/TF ≈
0.01 for most metals at room temperature. Note that Cel ∝ T . An alternative
derivation considers the fact that the only electrons which are likely to be
thermally excited are those within kT of µ, of which there are about g(EF ).
Attributing a classical thermal energy of 3

2
kT to each, we obtain:

U ′ =
3

2

V

2π2

(
2m

~2

)3/2√
EFk

2T 2

⇒ Cel ≈
3V

2π2

(
2m

~2

)3/2√
EFk

2T

which is proportional to T , but it would be nice to have C ∝ N . Note that:

N =

∫ EF

0

g(E) dE =
V

2π2

(
2m

~2

)3/2 ∫ EF

0

√
E dE
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=
2V

6π2

(
2m

~2

)3/2

E
3/2
F

⇒ 9N

2EF
=

3V

2π2

(
2m

~2

)3/2√
EF

⇒ Cel ≈
9N

2EF
k2T =

9Nk

2

T

TF

which is quite close to the more rigorous value (π2 rather than 9).
The free electron model works surprisingly well, despite completely ig-

noring the crystal lattice. Discrepancies between this model and experiment
are often accounted for by adjusting the electron mass to a “relative mass”
m∗, which arises due to the lattice (see later).

Recall that the heat capacity due to the lattice vibrations was propor-
tional to T 3 at low T ; that due to the electrons has just been shown to be
proportional to T . The overall heat capacity is then given by:

C =
12π4

5
Nk

(
T

θD

)3

+
9

2
Nk

T

TF
= βT 3 + γT

β and γ (and thus the Debye and Fermi Temperatures) may be calculated
experimentally by plotting C/T against T 2.

4.2 Bulk Modulus

Compressing a metal raises the energy of all the electron states, as they are
forced to have a shorter wavelength to fit in the box. The electrons in the
metal can thus be thought of as exerting an outward pressure, given by −∂U

∂V
.

This can be calculated very simply at T = 0. We recall that:

g(E) =
V

2π2

(
2m

~2

)3/2√
E ∝ E1/2 EF =

~2

2m

(
3π2n

)2/3 ∝ V −2/3

The average energy of a single electron at T = 0 is given by:

〈U〉 =

∫ EF
0

Eg(E) dE∫ EF
0

g(E) dE
=

∫ EF
0

E3/2 dE∫ EF
0

E1/2 dE
=

2
5
E

5/2
F

2
3
E

3/2
F

=
3

5
EF

and so the pressure is given by:

p = −∂N 〈U〉
∂V

= −3

5
N
∂EF
∂V

= −3

5
N

(
−2

3

EF
V

)
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=
2

5
nEF ∝ V −5/3

and the isothermal bulk modulus, defined by KT ≡ −V
(
∂p
∂V

)
T

, by:

KT ≡ −V
2

5
N

(
∂EF/V

∂V

)
T

= −V 2

5
N

(
−5

3

EF
V 2

)
=

2

3
nEF

4.3 Conductivity

The mean time between collisions (with either phonons or defects) is given
by τ , that is, the probability that by time t an electron hasn’t collided with
anything is e−t/τ . The rates due to phonons and defects individually can be
added to give the total: τ−1 = τ−1ph + τ−1def . If one assumes that the average
velocity after a collision is 0, then one simply calculates the mean velocity as
〈v〉 = ve−t/τ , which obeys:

d 〈v〉
dt

= −〈v〉
τ

This is how the “drag” acceleration due to collisions is described in the FEM.
The overall equation of motion for an electron (effective mass m∗) in some
fields is then:

m∗v̇ = −e(E + v ×B)−m∗v
τ

Suppose first that there is no B field, and that the electrons are moving
along in a steady current at a drift velocity, so that v = vd, v̇ = B = 0:

m∗
vd
τ

= −eE⇒ vd = − eτ
m∗

E

We also define electron mobility µ ≡ vd/E = eτ/m∗ here. Further, the
current density is given by J = −nevd, and given that J = σE, we obtain:

J =
ne2τ

m∗
E⇒ σ =

ne2τ

m∗
= neµ

At low T , few phonons are excited in the metal, and so τ is not infinite
purely due to scattering with defects. The rate of defect scattering does not
change with temperature (and so neither does σ at low T ), but different
samples will have different numbers of defects and so will be offset from each
other.

At high T , the number density of phonons becomes proportional to the
temperature, and so τ ∝ T−1. As such, σ ∝ T−1 at high T as well, but the
defects remain, and so different samples will retain the offset from each other
mentioned above – this is known as Matthiessen’s Rule.
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4.4 Optical Reflectivity

Optical frequencies are much higher than the scattering rate, so this can be
ignored. If there is no B field, then simply m∗ẍ = −eE. For a sinusoidal
E field and x, we obtain m∗ω2x0 = eE0. Now the polarisability has two
definitions:

P = −nex0 = χε0E0

− ne2

m∗ω2ε0
= χ

⇒ 1 + χ = ε = 1− ne2

m∗ω2ε0
= 1− ω2

P

ω2

where ω2
P = ne2/m∗ε0. We see that when ω > ωP , ε > 0 which means that

the metal is transparent to the light. When ω < ωP , ε becomes negative,
meaning that the electromagnetic wave becomes evanescent within the metal,
which appears opaque and reflective. For metals, ωP is usually in the UV
range, so they are typically reflective.

4.5 Thermal Conductivity

The reasoning behind κ = 1
3
C 〈c〉 l remains valid for electrons, and so this is

used to estimate the thermal conductivity due to the electrons in a metal.
Recall:

Cel =
π2

2
nkB

T

TF
Now kBTF = EF , which is the energy of the electrons at the edge of the Fermi
sphere; we can attribute a “Fermi velocity” to these such that EF = 1

2
m∗v2F .

We can also write that 〈c〉 = vF and l = vF τ to get everything into the
variables with which we are now familiar. Then we have:

κ =
1

3
· π

2

2
nkB

T
1

2kB
m∗v2F

· vF · vF τ

=
π2nk2BTτ

3m∗

On comparison with the thermal conductivity from phonons, this value (from
the electrons is much larger, as with experiment. At high temperatures, we
see that because τ ∝ T−1, thermal conductivity of metals is roughly constant,
whereas for insulators κ ∝ T−1 in this regime.

If we take the ratios of the thermal and electrical conductivities, we ob-
tain:

κ

σ
=
π2nk2BTτ

3m∗
m∗

ne2τ
=
π2k2B
3e2

T
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which is:

� Completely independent of the metal itself (m∗, n, τ)

� Proportional to temperature, with constant L ≈ 2.45× 10−8W Ω K−2

This was already an experimental law (the Wiedemann-Franz Law), and
there is very good agreement.

4.6 Hall Effect

When a B field is applied perpendicular to the current in a conductor, a
potential difference (and thus E field) is created in a direction perpendicular
to both. In the steady state, we have:

EH = B× vd = − 1

ne
B× J = RHB× J

where RH , the Hall coefficient, is given by −1/ne. However, this is not
in very good agreement with experiment, where RH is sometimes positive,
particularly for divalent metals (see later).

5 The Nearly-Free Electron Model

The Nearly-Free Electron Model differs from its totally free counterpart in
that the lattice is not ignored – the electrons are treated as being in a po-
tential with the lattice periodicity.

5.1 Bloch’s Theorem

As with all other physical variables, |Ψ|2 must have lattice periodicity, and
so we must have Ψ(r+a) = Ψ(r)eiδ = Ψ(r)eik·a for an electron of wavevector
k. Therefore, the wavefunction in a crystal must be of the form:

Ψk(r) = uk(r)eik·r

where uk(r) also has the lattice periodicity. This is Bloch’s Theorem.
Retreating to 1 dimension and a box width of A, Bloch’s Theorem gives:

uk(x) =
∞∑

n=−∞

Ckn
1√
A
ei

2πn
a
x

=
∑

Ckn
1√
A
einG1x
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⇒ Ψ(x) = uk(x)eikx

=
∑

Ckn
1√
A
ei(k+nG1)x

=
∑

Ckn |φkn〉

where |φkn〉 = 1√
A
ei(k+nG1)x are the set of basis states that will be used. The

state |φk0〉 is a free electron with wavenumber k.
Similar considerations mean that the potential V (x) is given by:

V (x) =
∞∑
p=1

Vp cos(pG1x) =
∑
p

Vp
2

(
eipG1x + e−ipG1x

)
where the origin is the location of an ion, and we have taken V0 = 0.

5.2 Matrix Mechanics

The Schrödinger Equation gives:∑
m

CkmĤ |φkm〉 = E
∑
p

Ckp |φkp〉∑
m

〈φkn|Ĥ|φkm〉︸ ︷︷ ︸
Hnm

Ckm = ECkn

which is a matrix equation. We should first calculate the matrix elements
Hnm:

Hnm =

∫ A

0

1√
A
e−i(k+nG1)x

(
− ~2

2me

∂2

∂x2
+
∑
p

Vp
2

(
eipG1x + e−ipG1x

)) 1√
A
ei(k+mG1)x dx

=
1

A

∫ A

0

~2(k +mG1)
2

2me

ei(m−n)G1x dx+
1

A

∑
p

Vp
2

∫ A

0

(
ei(m−n+p)G1x + ei(m−n−p)G1x

)
dx

=
~2(k +mG1)

2

2me

δ(m− n) +
∑
p

Vp
2

[δ(m− n+ p) + δ(m− n− p)]

The nearly-free electron model posits that the only significantly contribut-
ing to a state with wavenumber k will be |φk0〉 and |φk−1〉 (or perhaps |φk1〉),
that is:

|Ψ〉 ≈ Ck0 |φk0〉+ Ck−1 |φk−1〉
This is justified by saying that for a small potential, only states with energies
close to that of the central basis state |φk0〉 (whose energy is ~2k2/2m) will
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have significant contributions to the overall wavefunction. As E ∝ (k+nG1)
2,

any states other than these two will be much higher in energy.
For small values of k, even the adjacent |φk−1〉 state will be significantly

higher in energy, and Ck−1 ≈ 0, |Ψ〉 ≈ |φk0〉. For a value of k near the 1BZ
boundary, the two will have a more comparable energy; the energies are equal
for k = G1/2 and here the two states contribute equally.

With only these two states, the only matrix elements that are required
are H00, H0−1, H−10, H−1−1:

H−1−1 =
~2(k −G1)

2

2me

≡ Ek−1 H0−1 =
V1
2

H00 =
~2k2

2me

≡ Ek0 H−10 =
V1
2

so we have: (
Ek−1 V1/2
V1/2 Ek0

)(
Ck−1
Ck0

)
= Ek

(
Ck−1
Ck0

)
an eigenvalue equation with the solution:

Ek =
1

2
(Ek−1 + Ek0)±

√
1

4
(Ek−1 − Ek)2 +

(
V1
2

)2

=
~2

4me

(
(k −G1)

2 + k2
)
±

√(
~2

4me

((k −G1)2 − k2)
)2

+

(
V1
2

)2

5.3 Bands and Conduction

Ek−1 and Ek0 are quadratic functions of k, offset from one another by G1;
when V1 = 0, the two branches of Ek are simply these two quadratics. How-
ever, when V1 6= 0, the two branches separate, forming two distinct bands.

More generally, when one considers more basis states |φkn〉 and more
Fourier components of V (x), more bands are formed, with gaps between
them. The Fermi energy determines which bands are occupied – and to
what extent.

When there is no electric field, electrons are all simply in the lowest state
possible, and due to the symmetry of the bands there are equal numbers
moving forwards (∂ω

∂k
> 0) as backwards, so there is no net current. When

an electric field is applied, however, electrons are forced into higher k-states
in one direction, leading to a net current. Interactions with phonons and
defects will cause some electrons to be scattered into states with similar |k|,
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but with a randomised direction, so after thermalising down in energy they
often end up at the back of the queue.

In one dimension, the separation between electron states in k-space is
2π/X and the Brillouin zone has a size 2π/a; there are therefore X/a = n
electron states, and each band therefore has a capacity of 2n. For a univalent
element, the first band is half-filled, which means that the electrons can be
displaced over to one side of the band (in k-space) by an electric field –
univalent elements are conductors. For a trivalent element, the first band
is totally full, and the second band is half-filled – trivalent elements also
conduct.

It might be expected that divalent elements would not conduct, as they
would have a full first band and an empty second band, neither of which can
have their electrons displaced by an electric field. However, this is only the
case in 1D. It is always the case that for divalent metals, there are enough
electrons to fill the first band and leave no other states occupied, but it can
be seen that in 2D, the highest states in the first band (those with k near
the corner of the 1BZ) can in fact be higher in energy than the lowest states
in the second band, if the potential is not too strong as to cause a large
separation between the two bands. As a result, the first band is sometimes
only almost full, and the second only almost empty.

5.3.1 Bloch Oscillations

If the field is strong and the scattering weak, the filled states may be able
to cross into the 2BZ – i.e. backfolded into the back of the 1BZ. The effect
of this is an oscillating current, known as Bloch oscillation. The time period
of these oscillationss can be derived by noting that the forcing of an electric
field E is −eE, which will be equal to ~dk

dt
, where the derivative is the rate at

which the k of any particular electron is changing. The time period is then
the size of the 1BZ divided by dk

dt
.

Bloch Oscillations are observable in both condensed matter and in ultra-
cold Cs atoms.

5.3.2 Effective Mass

Sometimes forces can have unexpected effects on electrons in bands, which is
accounted for by ascribing to the electrons an effective mass m∗. We have:

m∗v̇ = ṗ

m∗
d

dt

(
1

~
dE

dk

)
= ~

dk

dt
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m∗
dk

dt

d2E

dk2
= ~2

dk

dt

⇒ m∗ = ~2/
d2E

dk2

In higher-D crystals it is clear that electrons may have different effective
masses in different directions: at saddle points of the dispersion relation the
electrons have positive mass in one direction and negative mass in the other!

Effective masses can be directly measured by applying strong magnetic
fields to a metal, which causes electrons to resonate around the field lines
with frequency

ω =
eB

m∗

This must be very high, as otherwise the electrons will collide with phonons
or impurities before travelling most of a circle. Strong B fields and low
temperatures are required to enable the electrons to travel for as long as
possible, and the resulting frequencies are often in the high-frequency radio
range (GHz). This technique is cyclotron resonance.

5.3.3 Holes

Divalent metals have an almost full lower band (known as the valence band)
and an almost empty upper band (the conduction band). Rather than ac-
counting for the movement of all the electrons in the valence band, it can be
easier to think of this as being equivalent to a full valence band superimposed
with a small number of holes. These holes have the negative of the energy
of the electrons (the hole band is inverted with respect to the valence band)
and the negative of the momentum as well.

One reason that using holes is convenient is that at the top of the valence
band the curvature is negative, leading to a negative effective mass. Holes do
not suffer from this: the hole corresponding to the lack of an electron with
a negative effective mass has a positive mass, making it far easier to think
about.

Both electrons and holes contribute to electrical conductivity, so we have
for instance:

σtot = σe + σh =
nee

2τe
m∗e

+
nhe

2τh
m∗h

The effective mass of the holes m∗h can also be measured by cyclotron reso-
nance (above).

Also, a more accurate value for the Hall coefficient can be deduced, in-
volving both electron and hole properties, which accounts for some of the
discrepancies seen earlier.
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6 Semiconductors

Unlike in divalent metals, the top of the valence band of a semiconductor is
below the conduction band, so at T = 0 there is no conduction. However,
this gap is small enough that at T > 0 some charge carriers can jump the
gap thermally; silicon is a classic example of such a material. When made
of a pure substance, the semiconductor is described as intrinsic, but it can
also be doped with impurities such as phosphorus or aluminium, forming an
extrinsic semiconductor, which will be the subject of this section.

6.1 Doping

When one replaces some Si atoms with P atoms, the energy levels change
only slightly, so the band structure looks the same. P is however in group
5, so there is an extra electron that has been donated to the system. This
electron can either be in an ionised state – away from the P atom and in the
conduction band – or a bound state AKA donor state – orbiting the P+ in a
quasi-hydrogenic orbit, for which:

E = − m∗e4

32π2ε2ε20~2
r =

4πεε0~2

m∗e2

This energy is relative to the electron being free to move in the conduction
band. It is clearly independent of k, and so these bound states are often
drawn as straight lines underneath the conduction band; they are often only
about −0.01eV so they’re certainly closer to the conduction band than the
valence band.

P brings an extra electron to proceedings, so it is described as an n-type
dopant. Al, by contrast, is in group 3, so if Si is replaced by Al there is a
hole introduced; Al is a p-type dopant. As with the electron donated by P,
this hole can either be in an ionised state or a bound state AKA acceptor
state, being either far away or orbiting an Al− ion. Analogously, the bound
state is located slightly above the valence band. [In fact what has actually
happened is that in the “ionised” state the Al has stolen an electron from
the valence band, leaving a free hole in the valence band; in the bound state
the Al re-releases this electron (a higher-energy state) and the hole becomes
“bound”]

6.2 Chemical Potential

From the Fermi-Dirac distribution above, it can be seen that µ is the energy
at which a state has a 50% chance of being occupied by an electron. At
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T = 0 therefore, when all the lowest-energy states are occupied, a p-type
semiconductor has µ at a level in between the occupied donor states and the
unoccupied valence band, and an n-type semiconductor has µ in between the
full valence band and the unoccupied (i.e. full of holes) acceptor state.

As T increases, however, higher energy states will become occupied due
to thermal excitation. P-type semiconductors will have their donor electrons
excited to the conduction band (becoming unbound) [note: kT ≈ 0.025eV at
T = 300K], as will some valence electrons; the chemical potential decreases as
the donor state is likely unoccupied. N-types will have their valence electrons
excited into the acceptor state, as well as perhaps the conduction band. The
chemical potential increases as the acceptor state becomes occupied as well as
the conduction band a bit. In both cases, µ moves towards the gap between
valence and conduction bands; as T →∞ the µ will equalise as in this regime
electrons don’t care about what states are available.

6.3 PN Junctions

Even at finite temperature, the chemical potential of an n-type semiconductor
is higher than that of a p-type. If the two are brought into intimate contact,
electrons will therefore diffuse from n to p, leaving P+ ions behind in favour
of the lower-energy unoccupied p-type valence states. Eventually however,
the charge imbalance sets up a contact potential difference which balances
the initial chemical potential difference.

The result is shown left.
Electrons from n diffuse over
to p, depleting some of its
holes. This creates a depletion
layer across the junction, con-
taining no charge carriers but
net charges on either side of
the junction. As ∇ · E =
ρ/εε0, this creates an electric
field within the depletion re-
gion, directed from n to p (as
n has now lost a lot of nega-
tive charges and become posi-
tive). Further, as E =∇φ, there
is an electrostatic potential cre-
ated, which mirrors the chemical
potential difference, so they can-
cel out overall and equilibrium is
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reached.

6.3.1 Biases and Diodes

If one manually applies a potential difference across the PN junction, the
effect is different depending on the direction of the potential difference.

If the junction is forward biased, we are pushing the electrons in the
direction they wanted to flow before the junction was created – from n to p.
This means that the electrons in the conduction band of the n-type material
are forced towards the junction to combine with more holes (as are the holes
in the valence band of the p-type) creating a “recombination current”; there
are a lot of these carriers and so conduction is good in this direction. This bias
causes the depletion region to increase as more electrons are being enlisted
to travel across the junction.

In reverse bias, the voltage is applied the other way. The charge carriers
mentioned above (the “majority carriers”) are forced away from the bound-
ary, and the much smaller number of electrons in the conduction band of the
n-type (and holes in the valence band of the n-type) are forced across. The
current generated as a result (“generation current”) is far smaller.

These currents can be quantified. Consider E � µ; the Fermi-Dirac
distribution then gives:

p(E) = pf (E;T ) =
1

1 + exp
(
E−µ
kT

) ≈ exp

(
µ− E
kT

)
When µ is artificially increased to µ+ eV , we obtain:

p(E;V ) = p(E; 0) exp

(
eV

kT

)
At V = 0, the generation current is equal to the recombination current
(hence steady state) and the generation current doesn’t vary with voltage
or temperature. On the other hand, the recombination current does, it is
proportional to exp (eV/kT ). As such, the total current is:

I = I0

[
exp

(
eV

kT

)
− 1

]
This gives essentially a one-way current – this is a diode.

6.4 Semiconductor Devices

Using the ideas developed above, many common semiconductor devices can
be qualitatively understood, including the Zener diode, avalanche breakdown
diodes, LEDs, semiconductor lasers, and solar cells.
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6.4.1 Zener Diodes

If the reverse bias is strong enough, the energy at the top of the p-type
valence band is higher than the bottom of the n-type conduction band. This
enables electrons in the p to quantum tunnel through to the other side.

This requires the materials to be heavily doped, so that the chemical
potential is very close to the band edge. The Zener breakdown depends
on the amount of doping, but often requires more than 3V. Whatever the
breakdown voltage is, it is usually very reliable, and so Zener diodes are often
used as references.

6.4.2 Avalanche Breakdown

Strong reverse bias might also cause a different kind of breakdown – avalanche.
Thermal excitation may cause some carriers within the depletion region to
un-deplete and get moving again. As they do so, collisions will often cause
other un-depletions, generating e−-h+ pairs; eventually a large reverse cur-
rent flows. This process dissipates lots of heat and can damage the device.
The avalanche may be triggered by a single photon, and so diodes in reverse
bias can be used as single-photon detectors.

6.4.3 LEDs

When a PN junction is forward-biased, majority carriers flow into the deple-
tion region and combines with holes; this process releases energy. For “direct
band-gap” materials (ideal for LEDs), this is most likely to be in the form
of light; the size of the band gap determines the wavelength of light emitted.
For indirect band-gap materials, light emission requires momentum from a
phonon, making it more likely that the energy will simply be dissipated as
heat.

LEDs are useful for communications, as they can be turned on and off very
quickly; they are also more energy-efficient than incandescent or fluorescent
lights.

6.4.4 Lasers

Ordinarily, higher energy states are less likely to be occupied (Boltzmann),
but if a population inversion can be maintained, they can be forced to be
more likely to be occupied. This is done by electrical “pumping”, using a
strong forward bias; this relies on the chemical potential being within the
n-conduction and p-valence bands, which requires very heavy doping. The
junction is then placed in an optical cavity, wherein photons of the band-gap
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energy bounce back and forth. These photons are able to stimulate electronic
transitions between the upper states and the lower states, leading to more
photons being produced.

6.4.5 Solar Cells

Solar cells are basically reverse LEDs. Solar photons create carrier pairs in
the depletion region, which are swept away by an electric field. Again, heavy
doping is required.
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