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1 Impedances

In the linear regime, all real voltage sources (transducers) can be represented
by an ideal voltage source in series with an output impedance Zo. This can
be deduced experimentally by joining the terminals of the source when it
produces a known voltage V and measuring the current I, which will be
equal to V/Zo.

An oscilloscope is modelled as an input impedance Zi in parallel with a
perfect voltmeter, reading Vi. Measuring the output voltage Vo of a trans-
ducer with a scope is like a circuit with the two in series; the one in the
slides. We then obtain:

Vi = Vo
Zi

Zi + Zo

So if we want the oscilloscope to accurately record the output of the trans-
ducer, we require Zi � Zo. The Zi is more accurately modelled as a resistance
in parallel with a capacitance, which causes a problem at high frequencies.
This is compensated for by using a scope probe, which removes the frequency
dependence at the cost of decreasing the voltage by a certain factor, often 10
or 100.

For a more general “black box”, we can define the input impedance of it
as the input voltage divided by the input current. For a buffer connection,
the input current is 0A, because op-amps draw essentially no current (see
later), so their input impedance is very large; their output impedance turns
out to be very low. This is why buffers are sometimes used to connect two
circuits but ramp up the impedance for some reason.

If instead we wish to measure the current, we instead want Zi to be low. If
we wish to transfer as much power as possible, we want Zi = Zo (impedance
matching).

Because for an oscilloscope Zi is so high, very little power is transferred to
it. In order for signals to be detected, therefore, they first must be amplified...
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2 Op-amps

For an ideal op-amp, the terminals draw no current, and the terminals are
at the same voltage. You can then solve all the circuits with feedback built
into them. Depending on what components are used in an op-amp circuit,
they can function as inverters, integrators, differentiators, filters, summers,
and more.

Non-ideal op-amps have an amplification (A) which is finite, complex,
and frequency-dependent, a finite ri (so draws a lil current), and a non-zero
Ro (so there’s a slight voltage drop going out). In the limit of quite large A,
ri, and quite small Ro, we obtain similar results, finding that Zo ∝ Ro/A and
Zi ∝ riA, so the approximation of an ideal op-amp is a good one.

Op-amps’ amplifications have a gain inversely proportional to frequency
at high frequency. This is because at high frequencies, capacitative com-
ponents might cause a voltage to be inverted, effectively swapping negative
feedback to positive. As most normal things (e.g. square wave input) have
high-frequency components, this is very likely to happen, so the open-loop
gain A is damped so that for high frequencies it is safely less than 1 and
saturation does not occur.

In general, feedback is written:

Vo = A(Vi + βVo)

⇒ Vo =
A

1− Aβ
Vi

At high A, this is becomes independent of any small changes in A. If β
depends on frequency, then any component at the frequency where β = A−1

will cause the op-amp to quickly saturate, generating a square wave as the
input at the special frequency flips back and forth.

3 Errors etcetera

All measurements have an error, equal to the measured value minus the true
value, which is never known.

Random errors have an average value of 0. The measured values can
be used to estimate the true value, which is what stats was invented for.
Systematic errors are all the other errors, i.e. ones that are constant or drift
over time. These can only be removed by good experimental design, and
have a variety of sources so are difficult to eliminate.

Random errors are often assumed to be Gaussian-distributed; the uncer-
tainty is quoted as the standard distribution σ of the distribution. The mean
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is estimated by:

X̄ =
1

N

∑
i

Xi

The variance of any set is the mean square deviation from the mean:

Var(X) = E
[
(X − µ)2

]
Where µ = E(X). The variance of two variables is simply the sum of the
variances:

Var(X1 +X2) = E
[
(X1 +X2 − µ1 − µ2)2

]
= E

[
(X1 − µ1)2 + 2(X1 − µ1)(X2 − µ2) + (X2 − µ2)2

]
= Var(X1) + 2Cov(X1, X2) + Var(X2)

= Var(X1) + Var(X2)

where the last line follows from the independence of the variables, so that
the two have zero covariance. Similarly, the variance of N times a random
variable is:

Var(NX) = E
[
(NX −Nµ)2

]
= N2E

[
(X − µ)2

]
= N2Var(X)

Now consider taking the variance of the sum of N variables drawn indepen-
dently from the same distribution (i.e. E(Xi) = E(X), Var(Xi) = Var(X),
i ∈ {1, ..., N}). This quantity is:

Var

(∑
i

Xi

)
=
∑
i

Var(Xi)

Var(NX̄) = NVar(X)

N2Var(X̄) = NVar(X)

Var(X̄) =
1

N
Var(X)

The mean of X̄ and X is the same (µ), so taking the mean of many measure-
ments just reduces the variance by a factor of N , and the standard deviation
by a factor of

√
N .

Given a set of data, it is quite easy to calculate the mean. One might
assume that the best way to calculate the variance is:

s2 =
1

N

∑
i

(Xi − X̄)2
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but because X̄ is calculated for the purpose of being close to the Xi, (Xi−X̄)2

will obviously be quite low - and the deviations from the true mean are likely
to be higher. Consider the expression:∑

i

(Xi − X̄)2

Its expected value is given by:

E
∑
i

(Xi − X̄)2 = E
∑
i

(Xi − µ+ µ− X̄)2

= E
∑
i

[
(Xi − µ)2 + 2(µ− X̄)(Xi − µ) + (µ− X̄)2

]
=
∑
i

E
[
(Xi − µ)2

]
− 2E

[
(X̄ − µ)

∑
i

(Xi − µ)

]
+
∑
i

E
[
(µ− X̄)2

]
=
∑
i

Var(X)− 2E
[
N(X̄ − µ)2

]
+
∑
i

Var(X̄)

= NVar(X)− 2NVar(X̄) +NVar(X̄)

= (N − 1)Var(X)

so s2 would be off by a factor of (N−1)/N . The best estimate from a sample
of the true variance of an underlying distribution is therefore given by:

σ2 =
1

N − 1

∑
i

(Xi − X̄)2

since the expected value of this estimator is Var(X). The variance in the
mean is then given by:

σ2
X̄ =

σ2

N
=

1

N(N − 1)

∑
i

(Xi − X̄)2 =
1

N − 1
s2

3.1 Error propagation

If we have measured Gaussian uncertainties in x, y, ..., and we wish to mea-
sure the uncertainty of a function f(x, y, ...), it is given by:

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y

Important special cases of this are given here;

f = x+ y ⇒ σ2
f = σ2

x + σ2
y
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f = xn ⇒ σf
f

= |n|σx
x

f = xy or
x

y
⇒

σ2
f

f 2
=
σ2
x

x2
+
σ2
y

y2

For particularly complicated functions, just evaluate σx(∂f/∂x) “empiri-
cally”, i.e. as f(x+ σx)− f(x).

3.2 Systematic Errors

Some general tactics:

� Calibrate instruments by seeing if they gave a response you know they
should

� Exploit symmetries (e.g. swapping leads)

� Recognise any prejudices you may have, and design experiments to
avoid them

� Use null methods - it is easy to distinguish something from nothing

� Beware of changes in time - measure in the order ABCCBA rather than
AABBCC etc.

� Differential measurements against a standard or known value

� Beware of selection effects - make sure your experiment doesn’t exclude
anything by its actual design

4 Signal Processing

It is much easier to sample digitally (at a set of fixed values) than analogue
(continuously). There is a minimum rate of sampling required for a given
signal, because an under-sampled high-frequency wave just appears as a low-
frequency wave, a phenomenon known as aliasing. This rate is double the
highest-frequency component in the signal. Otherwise, when sampling (AKA
convoluting with an inverse-frequency Dirac comb in frequency space) the
convolution images will overlap and frequency information is lost.

One can sample at less than the Nyquist rate if all the frequency com-
ponents are within a small bandwidth at high frequency. In that case, we
can just shift the frequency spectrum down to the origin, and we can then
sample at just double the bandwidth.
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Independently of this, the spectral resolution of a sampler (i.e. the small-
est differences in frequency that can be distinguished) ∆f is given by ∆f =
1/T where T is the amount of time for which we have sampled the function.

Digitisation also involves quantisation of the y-values. Quantisation at an
infinitely fine scale is not possible, but it isn’t desirable either because there
is no point quantising further if all it will reveal is noise. N-bit sampling
involves quantisation into 2N levels, or bins. Quantisation also be used to
reduce noise. If one samples at 4 times the Nyquist rate (i.e. 8 times the
maximum-frequency component), the four values obtained can be averaged,
effectively reducing the noise of the signal by a factor of 2 (=

√
4).

5 Noise

If the signal and the noise have non-overlapping spectra, filters can be used
to remove noise. A filter which rises and falls quickly around the signal is
ideal. However, often there is noise present at all frequencies - pink noise goes
as 1/f ; shot noise and Johnson noise are white, constant at all frequencies.
Noise is usually lowest at high frequencies, so signals at low frequencies should
be encoded at high frequencies for reliable transmission. The phase-sensitive
detector is a good way of doing this.

Experiments often need to be shielded from vibration, which might be
caused by people moving about, seismic noise etc. We model whatever the
experiment is resting on as a damped harmonic oscillator, with a certain ω0.
If the frequency of the noise (forcing) is much higher than ω0, there will be
very little response, so a first tactic would be to decrease ω0, most easily by
decreasing k, such as with an air cushion. For an air cushion 0.2m thick,
ω0 comes out to about 1Hz, so pretty much all noise will provoke almost no
response.

Eliminating thermal noise is often important in quantum experiments,
where one system is often very cold and must be shielded from the hotter
surroundings. The first steps are to reduce evaporation (using a lid), conduc-
tion (insulate), and convection (vacuum). Reducing radiation is often more
complicated. The net radiation flux between the hot area and the cold area
is σε(T 4

h − T 4). Often this is most easily reduced by reducing ε, using shiny
surfaces like polished foils (which have ε ≈ 0.03), but note that ε is often a
function of wavelength, and it only really matters what ε does at the peak
of the black-body curve λp = b/T . Another option is to put a heat shield
around the apparatus. In the steady state, the screen reaches a temperature
Ts and the output flux is equal to the input flux, i.e.:

2T 4
s = T 4

h + T 4
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So the net heat flux to the apparatus is then:

1

2
σε(T 4

h + T 4)− σεT 4

=
1

2
σε(T 4

h − T 4)

1/2 of what it was without the screen. One can further show that introducing
n screens reduces the incident radiation by a factor of n+ 1. A final way to
reduce the total incident heat is to reduce the area of the apparatus, making
it spherical where possible.

Several strategies are available for reducing noise in electrical circuits.
Twisting wires means that wires travel essentially along the same path, mean-
ing that stray E and B fields have no net effect. Avoiding earth loops reduces
noise from varying magnetic fields. Faraday cages lead to no E fields being
present within, and high-µ shields can reduce B fields within by a factor of
about 100.

6 Presenting your work or something

Hopefully won’t come up on the exam

7 Probability Distributions

7.1 Binomial

When a trial with two possible outcomes (with probabilities p, 1 − p) is
repeated N times, how many of each outcome occurs in total?

P (r) =
N !

r!(N − r)!
pr(1− p)N−r

This distribution is normalised:

N∑
r=0

P (r) =
N∑
r=0

N !

r!(N − r)!
pr(1− p)N−r

= (p+ (1− p))N = 1

has a mean of Np:

〈r〉 =
N∑
r=0

rP (r)
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=
N∑
r=0

r
N !

r!(N − r)!
pr(1− p)N−r

=
N∑
r=1

r
N !

r!(N − r)!
pr(1− p)N−r

=
N∑
r=1

N !

(r − 1)!(N − r)!
pr(1− p)N−r

=
N−1∑
r=0

N !

r!(N − 1− r)!
pr+1(1− p)N−1−r

= Np
N−1∑
r=0

(N − 1)!

r!(N − 1− r)!
pr(1− p)N−1−r

= Np(p+ (1− p))N−1 = Np

and a variance of Np(1− p):

〈r2〉 =
N∑
r=0

r2P (r)

=
N∑
r=0

r2 N !

r!(N − r)!
pr(1− p)N−r

=
N∑
r=1

r2 N !

r!(N − r)!
pr(1− p)N−r

=
N∑
r=1

r
N !

(r − 1)!(N − r)!
pr(1− p)N−r

=
N−1∑
r=0

(r + 1)
N !

r!(N − 1− r)!
pr+1(1− p)N−1−r

=
N−1∑
r=0

r
N !

r!(N − 1− r)!
pr+1(1− p)N−1−r +

N−1∑
r=0

N !

r!(N − 1− r)!
pr+1(1− p)N−1−r

=
N−1∑
r=1

N !

(r − 1)!(N − 1− r)!
pr+1(1− p)N−1−r +Np

=
N−2∑
r=0

N !

r!(N − 2− r)!
pr+2(1− p)N−2−r +Np

= N(N − 1)p2 +Np
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⇒ Var(r) = N(N − 1)p2 +Np− (Np)2

= −Np2 +Np = Np(1− p)

and so standard deviation
√
Np(1− p), largest for p = 0.5.

7.2 Poisson Distribution

Derived from the Binomial Distribution in the limit of p → 0, N → ∞ but
Np→ λ which is finite, and the mean. This is used to describe the number
of instantaneous events happening at a uniform average rate of occurrence
within a specific time-frame, e.g. lightning strikes within one hour. We have:

P (r) = lim
p→0
N→∞
Np→λ

N !

r!(N − r)!
pr(1− p)N−r

= lim
N→∞

N !

r!(N − r)!

(
λ

N

)r (
1− λ

N

)N−r
= lim

N→∞

N r

r!

λr

N r

(
1− λ

N

)N
=
λr

r!
e−λ

Normalised:
∞∑
r=0

P (r) = e−λ
∞∑
r=0

λr

r!
= e−λeλ = 1

Mean of λ:

〈r〉 =
∞∑
r=0

rP (r) = e−λ
∞∑
r=0

rλr

r!
= e−λ

∞∑
r=1

rλr

r!
= e−λ

∞∑
r=1

λr

(r − 1)!

= e−λ
∞∑
r=0

λr+1

r!
= e−λλeλ = λ

Variance of λ as well:

〈r2〉 =
∞∑
r=0

r2P (r) = e−λ
∞∑
r=0

r2λr

r!
= e−λ

∞∑
r=1

r2λr

r!
= e−λ

∞∑
r=1

rλr

(r − 1)!

= e−λ
∞∑
r=0

(r + 1)λr+1

r!
= e−λ

(
∞∑
r=0

rλr+1

r!
+
∞∑
r=0

λr+1

r!

)
= e−λ

(
λ2eλ + λeλ

)
= λ2 + λ

⇒ Var(r) = λ2 + λ− λ2 = λ

and so standard deviation
√
λ.
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7.3 Gaussian Distribution

Can be derived from both the Poisson distribution (small deviations from
a large λ, i.e. λ, r � 0) and the Binomial distribution (N → ∞). From
Poisson, using Stirling’s approximation and setting x = r − λ:

P (r) = e−λλrerr−r
1√
2πr

=
1√

2π(λ+ x)
e−λeλ+x

(
λ+ x

λ

)−(λ+x)

≈ 1√
2πλ

ex
(

1 +
x

λ

)−(λ+x)

=
1√
2πλ

exe−(λ+x) ln(1+ x
λ

)

≈ 1√
2πλ

exe−(λ+x)( x
λ
− x2

2λ2
) ≈ 1√

2πλ
exe−x−

x2

2λ

=
1√
2πλ

e−
x2

2λ

The Gaussian Distribution is so important because any quantity depending
on the sum of a large number of independent variables (for instance, the
mean of a set of data drawn from some distribution – the distribution of
these individual data need not be Gaussian) tends to a Gaussian – this is the
Central Limit Theorem.

7.4 Probabilistic Noise

These probability distributions are applied to deduce how noise works in
some circumstances.

Shot noise is due to the discrete nature of currents, light etc. A Poisson-
based analysis of current that is not really given, gives:

∆I2 = 2Iavge∆ν

where ∆ν is the bandwidth of the current, I guess.
Johnson noise is due to systems thermally oscillating. In a simple circuit

that they drew, we have that the mean power dissipated due to this noise P̄
is given by:

P̄ = 4kT∆ν

8 Inference

8.1 Bayesian Statistics

Bayes’ Theorem can be used to suggest the probability that a model a (often
a vector of parameters, like the gradient and intercept) is true given a set of
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data:

P (model|data) = P (data|model)P (model)

P (data)

P (data|model) is often calculable from the probability distributions above;
P (data) is just a normalisation, in the sense that it does not depend on what
model we are testing. P (model) is known as the prior and represents the
initial likelihood of the model before any data were taken. Importantly, if the
prior is very small, then some very good-fitting data would be required to give
a posterior that is high. For instance, although CERN data once suggested
that the speed of light had been exceeded (P (data|model) was quite high),
the fact that we previously thought such an occurrence massively unlikely (a
“strong” prior) means that few people thought that this law had really been
violated.

When one has no idea what scale a should be, a good initial prior is one
that is uniform in log-space: P (a) ∝ 1/a da

We might assume that a is equally likely in some range. In this case, we
in fact have that P (model|data) ∝ P (data|model), and we can just calculate
the best model based on the probability distribution...

8.2 Goodness of fit

We suppose that x values are measured with infinite precision, and that data
points yi are from a Gaussian distribution, with std σi. The P (data|model)
(also known as the likelihood L) for a model y = f(x|a) is thus given by:

L(a) =
∏
i

1√
2πσ2

i

exp

(
−(yi − f(xi|a))2

2σ2
i

)
This is to be maximised to find the maximum probability. We therefore set
∇L(a) = 0 and find a. It is actually way easier for a Gaussian error thing
to find the maxima of lnL, which is:

lnL = −1

2

∑
i

(
yi − f(xi|a)

σi

)2

− 1

2

∑
i

ln(2πσ2
i )

Thus to maximise the likelihood, one should minimise the quantity:

χ2 =
∑
i

(
yi − f(xi|a)

σi

)2

This can be done, for instance, for a straight line fit, where f(xi|a) = a1xi +
a2. The formulae are apparently in the formula book, but some highlights
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are here for the case that σi = σ ∀i:

â1 =
Cov(x, y)

Var(x)
=
xy − x̄ȳ
x2 − x̄2

â2 = ȳ − â1x̄

we see that the best fit line goes through (x̄, ȳ).
If the model fits the data quite well, each point will be about σi away

from the model value, suggesting that χ2 = N . Critical values of the χ2

distribution are tabulated, and depend on the number of degrees of freedom
(the dimensionality of a).

Considering how this works for data around a horizontal line leads to the
idea of a weighted mean of a sequence of numbers with different uncertainties,
where rather than weighting each value equally, the values are weighted by
the inverse square of their individual uncertainties:

ȳ =

∑
i yi/σ

2
i∑

i 1/σ
2
i

The corresponding uncertainty in the mean is given by the root-harmonic-
mean-square of the individual uncertainties:

σ2
ȳ =

1∑
i 1/σ

2
i
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