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1 Introduction

According to Huygens, each point on a wavefront generates a spherical “wavelet”
which collectively carry the wave along. This can be used to derive Snell’s
Law, but also the diffraction pattern at a point on a screen a distance L away
from an aperture. (Actually Huygens’ Principle would lead to a backward-
propagating wave as well, which is not observed, but we will be interested
only in points pretty much directly in front of the source, so this point can
be disregarded.) (Also the wavelets after the aperture have an amplitude of
−i/λ relative to the primary ones, but we will be interested only in the rela-
tive amplitudes of the diffraction pattern, so we ignore this too.) The wave
amplitude decreases as 1/r, so that the intensity decays as an inverse-square
to conserve energy. Thus the wavelet generated by the element at (x, y) in
the aperture plane thus has an amplitude proportional to:

dψ(x,y) ∝ h(x, y)
eikr1(x,y)

r1(x, y)
dx dy

where h(x, y) is the aperture function (typically just 1 for the aperture bit
and 0 for the blocking screen) and r1(x, y) is the distance from the source to
the element (x, y). Dropping all the functional dependences for aesthetics,
the resultant amplitude at the point P = (x0, y0) on the measuring screen is
then proportional to:

ψP ∝
∫∫

Σ

h(x, y)
eikr1

r1

eikr2

r2

dx dy (1)

where r2(x, y, x0, y0) is the distance from the element (x, y) to the point of
interest P = (x0, y0) (so r2 > L), and Σ is the aperture plane, whose extent
by the way we characterise by a size l for convenience, i.e. x2 + y2 6 l2.
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2 Fraunhofer Diffraction

We look for solutions to the above in a certain regime:

� r1 ≫ l. This means that r1(x, y) is essentially constant for all x, y, as
is eikr1 .

� L� l2/λ. This turns out to define Fraunhofer diffraction as the regime
where the phase varies linearly across the aperture, as we will see.

With the first restrictions in mind, we can modify the integral (1) to:

ψP ∝
∫∫

Σ

h(x, y)
eikr2

r2

dx dy (2)

r2 requires a closer look. It can be easily seen that

r2
2 = L2 + (x0 − x)2 + (y0 − y)2

= L2 + x2
0 + y2

0︸ ︷︷ ︸
R2

−2(x0x+ y0y) + x2 + y2

= R2

(
1− 2

x0x+ y0y

R2
+
x2 + y2

R2

)

⇒ kr2 =
2π

λ
r2 ≈

2π

λ
R

(
1− x0x+ y0y

R2
+
x2 + y2

2R2

)

=
2πR

λ
− 2π

λ

x0x+ y0y

R
+
π

λ

x2 + y2

R︸ ︷︷ ︸
≈0

≈ 2π

λ

(
R− x0x+ y0y

R

)
= kR− kx0

R
x− ky0

R
y

and as for the factor of 1/r2, we assume that to be constant (1/R) and ig-
nore the variation, which is likely to be small anyway. Large enough to detect
the phase difference, which cycles around and is sometimes zero, but small
enough to neglect on the denominator. Thus the only thing remaining to ob-
tain the Fraunhofer diffraction equation is to define (p, q) = (kx0/R, ky0/R),
which themselves are often defined as (k sin ξ, k sin θ). We then have:

ψP ∝
∫∫

Σ

h(x, y)e−ipx−iqy dx dy (3)

– the Fraunhofer Diffraction Equation, which is simply a 2-dimensional Fourier
transform. If Σ, or equivalently h(x, y), are constant in e.g. the x direction,
then:

ψP ∝
∫

Σ

h(y)e−iqy dy (4)
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2.1 Diffraction Gratings

A diffraction grating of N slits has an aperture function:

h(y) =
N−1∑
n=0

δ(y − nd)

where d is the spacing of the grating. Therefore the amplitude at a point q
is given by:

ψP ∝
N−1∑
n=0

e−iqnd

=
1− e−iqNd

1− e−iqd

∝ eiqNd/2 − e−iqNd/2

eiqd/2 − e−iqd/2

∝ sin(qNd/2)

sin(qd/2)

This is an important result; the square of this gives the intensity. We see
that there are primary maxima wherever the denominator vanishes

qd

2
= mπ ⇒ q =

2mπ

d
(Primary maxima)

and subsidiary maxima wherever the numerator is ±1

qNd

2
=

(
M +

1

2

)
π ⇒ q =

2(M + 1/2)

Nd
(Subsidiary maxima)

for integers m and M — the orders of the peaks.

Diffraction gratings can be used to separate light of different wavelengths,
and thus are useful in spectroscopy. The first minimum around the central
maximum is found for qNd/2 = π, i.e. q = 2π/Nd. This is also the distance
from any primary maximum to the nearest minimum. Now q depends on
the wavelength of the light being used; consider trying to separate two wave-
lengths of light: λ and λ + δλ. The first minimum of λ around the primary
maximum of order m occurs at q = 2πθ/λ = 2mπ/d + 2π/Nd, so the angle
is:

θ =
mλ

d
+

λ

Nd
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If this lies on top of the mth order maximum of λ + δλ, then according to
the Rayleigh criterion the two wavelengths count as resolved. This means
that q′ = 2πθ/(λ+ δλ) = 2mπ/d, so

θ =
m(λ+ δλ)

d

Thus the “chromatic resolving power” of the grating (given by λ/δλ) is found
by setting these two expressions equal:

m(λ+ δλ)

d
=
mλ

d
+

λ

Nd
mδλ

d
=

λ

Nd
λ

δλ
= mN

so more slits (and higher orders) enable greater chromatic resolution.

2.2 2D Apertures

Often the aperture function h(x, y) is separable in x and y, in which case the
Fraunhofer diffraction pattern in 2 dimensions only takes double the work in
these cases, e.g. rectangular apertures.

For a circular aperture, this is not the case, though we can simplify things as
all the dimensions are equivalent, i.e. the amplitude is symmetric in p and q,
so we can express the amplitude ψP solely in terms of, say, θ. Unfortunately,
though, turns out the solution for ψP is only expressible as a Bessel function
of the 1st kind:

ψP ∝
J1

(
πDθ
λ

)
πDθ
λ

where D is the diameter of the aperture. The region of this function inside
the first zero (J1(3.8317) ≈ 0) is known as the Airy disc; the angular radius
of the disc is therefore 3.8317λ/πD ≈ 1.2197λ/D. One might use a lens
in order to simulate a circular aperture; if the screen is at the focal point
of the lens, the radius of the disc is therefore 1.22λf/D. If one has an
instrument designed to create such images (e.g. a telescope) using a circular
aperture, this is the limit to the angular resolution of the device. There may
be other factors like atmospheric disturbances making it even worse, but if
diffraction is the only thing preventing further precision, the device is said
to be “diffraction limited”.
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3 Fresnel Diffraction

Suppose we are no longer at a distance where L � l2/λ. This is the do-
main of Fresnel diffraction, of order l2/λ or smaller away from the aperture.
We begin the analysis by supposing that the (point) source is a distance a
behind the aperture, and considering the amplitude at the origin, so that
r1 =

√
a2 + x2 + y2 and r2 =

√
L2 + x2 + y2. Thus the original formula 1

becomes:

ψP (0, 0) ∝
∫∫

Σ

h(x, y)
eik
√
a2+x2+y2√

a2 + x2 + y2

eik
√
L2+x2+y2√

L2 + x2 + y2
dx dy (5)

This requires simplification. The denominator can be taken as roughly con-
stant (as before) (for now), but variations in x and y are not incomparable
with λ, which k depends on. We therefore approximate r1 + r2 as:

r1 + r2 =
√
a2 + x2 + y2 +

√
L2 + x2 + y2

≈ a+
x2 + y2

2a
+ L+

x2 + y2

2L
+O(x4)

= a+ L+
x2 + y2

2R

where R−1 = a−1 +L−1 (we are very much running out of letters here!). Thus
the amplitude can then be written as:

ψP (0, 0) ∝
∫∫

Σ

h(x, y) exp

(
ik
x2 + y2

2R

)
dx dy (6)

which funnily enough was the term we threw away in Fraunhofer, but with
R instead of R. Changing variables to simplify things:

u = x

√
k

πR
v = y

√
k

πR

⇒ ψP (0, 0) ∝
∫∫

Σ

h(u, v) exp

(
i
πu2

2

)
exp

(
i
πv2

2

)
dx dy (7)

This is a hard integral. We will for simplicity only include problems where the
double integral reduces to a single (either by being constant in one dimension,
or by separation), and where h = 1 or 0. We then have:

⇒ ψP (0, 0) ∝
∫ w2

w1

exp

(
i
πu2

2

)
du (8)
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where [w1, w2] is the open region of the aperture.

Defining the Fresnel Integrals as:

C(w) =

∫ w

0

cos

(
πu2

2

)
du S(w) =

∫ w

0

sin

(
πu2

2

)
du

We can then evaluate (8) if we can evaluate the Fresnel integrals (there’ll
have to be some subtractions and stuff but that’s not too bad). Unfortu-
nately these integrands have no antiderivative, so they must be evaluated
numerically. A neat way of doing this is to make use of the Cornu Spiral,
the locus of all points

(
C(w), S(w)

)
in the complex plane:

The Cornu Spiral is interesting for many reasons, among which that on trav-
elling along the curve from the origin for a length w, one arrives at exactly
the point

(
C(w), S(w)

)
; the spiral is often labelled with values of w along it.

Integrals like (8) can therefore be evaluated by converting it to one or more
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Fresnel Integrals and then evaluating these using the Cornu Spiral.

The above enables one to evaluate the amplitudes at (x0, y0) = (0, 0); what
if we want to know the intensity at some other point? Well I’m not sure how
I feel about this, but we change the origin and then apparently everything
else is still alright. The axis is chosen so that the source and the point of
interest are on it, and the bounds of the aperture are adjusted accordingly.

3.1 Circular Aperture

Suppose h(x, y) = 1 for x2 + y2 6 S2, i.e. a circular aperture of radius S.
We can then convert equation 5 to:

ψP (0, 0) ∝
∫ ρ=S

ρ=0

eik
√
a2+ρ2√

a2 + ρ2

eik
√
L2+ρ2√

L2 + ρ2
2πρ dρ

∝
∫ S

0

1√
L2 + ρ2

exp

(
ik
ρ2

2R

)
2ρ dρ

Then, changing variables to s = ρ2, we obtain:

ψP (0, 0) ∝
∫ s=S2

s=0

1√
L2 + s

exp

(
ik

s

2R

)
ds

This integral is not evaluated, but conceptualised. The pre-exponential fac-
tor is a slowly-decreasing function of s, and if we were to get far enough from
the origin that the obliquity factor K gets involved, that would also be a
slowly-decreasing function of s. The exponential itself can be thought of in
a phasor sense as an arrow, whose orientation linearly increases with s; just
how much it changes by depends on the size of s relative to k and R. So
what the integral does is add together a series of infinitesimal arrows, each
in a more anticlockwise direction, and slightly shorter, than the last. This
leads to the visualisation of the integral on the following page:
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The distance from O (the origin of the Argand Diagram) to the point on the
spiral corresponding to s = S2 is ψP (0, 0), so as S is increased, ψP (0, 0) ini-
tially increases, reaches a maximum when the argument φ of the exponential
reaches π, and then a minimum when φ = 2π. The central circular region
of the aperture for which φ < π (i.e. the first semicircle of the phasor di-
agram) is termed the “1st Fresnel half-period zone”. The radius of the 1st
half-period zone is then found:

k
ρ2

1

2R
= π

⇒ ρ1 =

√
2πR

k

=
√
λR

The 2nd half-period zone is the annulus on the aperture for which φ is in
between π and 2π. It has an inner radius of

√
λR and an outer radius easily

shown to be ρ2 =
√

2λR. Similarly, the nth half-period zone has an inner
radius of

√
(n− 1)λR and an outer radius of

√
nλR. Interestingly, the area

of each half-period zone is π(ρ2
n − ρ2

n−1) = πλR, the same for all n.
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The line OF on the imaginary axis corresponds to the limit s → ∞, i.e.
S → ∞, i.e. an aperture with an infinite radius, i.e. no obstacles at all.
Interestingly, if one introduces a small circular obstruction on the axis, then
the integral is instead goes from a certain non-zero point up to ∞. This
corresponds on the phasor diagram to an amplitude arrow drawn from some
point on the outer circumference, to F (wherein the spiral goes at infinity).
Provided the object isn’t too big (which would lead to starting the arrow
on inner spirals), the magnitude of the resulting amplitudes is roughly the
same as OF , i.e. the same intensity as if there were no spot present. This
leads to a bright spot appearing at (0, 0), known as Poisson’s (or Arago’s, or
Fresnel’s) Spot; this is a special case of Babinet’s Theorem, which isn’t too
difficult to show.

To consider the behaviour of a circular aperture off-axis (i.e. ψ(x, y) for
x, y 6= 0), as before we adjust the origin so that the axis is between the
source and (x, y). We must then effectively move the aperture over the Fres-
nel zones, adding areas of the odd half-zones and subtracting those of the
even half-zones.

A Fresnel zone plate is designed to block out every other half-zone (often
blocking the 1st, 3rd... and admitting the 2nd, 4th...), so the resultant am-
plitude is found from adding semicircles end-to-end in the Argand diagram.
As the size of the Fresnel zones depend on R, and thus L, a zone plate only
works at a certain distance (L) away from it – not unlike a lens with a certain
focal length f = L. Because the incoming wave is assumed to be a plane
wave, a is assumed large, and so L ≈ R, so f ≈ R = ρ2

1/λ. This focal length is
therefore highly wavelength-dependent, i.e. much chromatic aberration will
be present.

On moving the observation point closer to the axis (i.e. reducing L, and
thus R), the size of the Fresnel half-zones changes, and when L (and ess.
R) are reduced by a factor of 2, each open area of the half-plate admits two
half-zones, which cancel each other out and the overall amplitude and inten-
sity goes to 0. Similar things occur for L′ = L/4, L/6 etc. However, when
L′ = L/3 etc., each open area of the half-plate admits an odd number of half-
zones, and there are subsidiary maxima. These maxima gradually decrease
in size, however, due to the reductions caused by K.
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4 Interferometry

Consider Ψ, a superposition of two general waves <ψ1e
−iω1t + <ψ2e

−iω2t =
<(ψ1e

−iω1t +ψ2e
−iω2t) = <Ψ̂. The intensity of Ψ is given by its square; since

<(A)<(B) = 1
2
<(AB + AB∗), we have:

I = Ψ2 =
1

2
<(Ψ̂2 + Ψ̂Ψ̂∗)

=
1

2
<(Ψ̂2) +

1

2
|Ψ̂|2

=
1

2
<(ψ2

1e
−2iω1t + 2ψ1ψ2e

−i(ω1+ω2)t + ψ2
2e
−2iω2t)

+
1

2
(|ψ1|2 + 2<ψ∗1ψ2e

−i(ω2−ω1)t + |ψ2|2)

Now most detectors have a response time of such a length (usu. above 1ns)
that variation of frequency ω1 or ω2 will simply average to 0, whereas that
of frequency ω2 − ω1 might not – we might be dealing with 700nm light
interfering with 697nm light, for instance. The intensity detected by the
detector, 〈I〉, is then:

〈I〉 =
1

2
|ψ1|2 + <ψ∗1ψ2〈e−i(ω2−ω1)t〉+

1

2
|ψ2|2

=
1

2
|ψ1|2 +

1

2
|ψ2|2 + |ψ1||ψ2|<〈ei(φ2−φ1−(ω2−ω1)t)〉︸ ︷︷ ︸

interference term

where φ2−φ1 is the relative phase of the two waves, and the time-averaging is
done over the integration time of the detector (over all time, the interference
term will also go to 0). The first two terms here are simply the intensities of
the two individual waves; the interference term is what will be important in
this section.

There are two parts to this term: the relative phase, and the relative fre-
quency; the former is most important. The phases of independent sources
(e.g. emissions from two different atoms) typically vary in time randomly,
so interference is almost only seen when the two waves originate from the
same source – often by splitting the light from a single source, sending them
through different paths, and recombining them later. An advantage of this is
that the frequencies will also be the same, so we will not have to worry about
the relative frequency term. Even with the subtraction, the frequencies have
to be very close together to be able to detect any time variation.
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4.1 Michelson Interferometer and Fourier Transform
Spectroscopy

The Michelson Interferometer consists of a beam splitter and two mirrors.
The point light source is split in two by the beam splitter, and the two waves
propagate at 90◦. They reflect off of their relative mirrors and return to the
beam splitter, where half of each simply returns back to the source, and the
other half interfere; the resulting intensity is recorded by a detector. De-
pending on the difference between the two path lengths, φ2 − φ1 can create
constructive or destructive interference; one mirror is kept fixed (to an accu-
racy of � λ by necessity) and the other moved relative to it.

We have |ψi|2 = I0, ω1 = ω2 and φ2 − φ1 = kx where x is the path dif-
ference – note that this is double the difference in the distances between the
mirrors and the splitter.:

〈I〉(x) =
1

2
I0 +

1

2
I0 +

√
I0

√
I0<eikx

= I0(1 + <eikx)

so if x is varied linearly in time, the output of the interferometer’s detector
will be I0(1 + cos kvt) – fringes.

If two wavelengths are present (k0±∆k), there is still no interference observed
between the two wavelengths (their frequencies are likely still too different).
The output is therefore simply the sum of the two fringe patterns, and a
beating pattern is seen as a function of x, varying as 1 + cos(k0x) cos(∆kx)
(as can be seen by adding these two waves together, assuming they have the
same amplitude). One then defines the fringe contrast ν as:

ν =
Imax − Imin

Imax + Imin

At a point where the modulating sinusoid is 0, the fringes (due to the high-
frequency sinusoid) are very dim – the fringe contrast is low; where the
modulating sinusoid is 1, the fringes are bright and easily distinguished.

If a broadband light is used, with an intensity 2S(k) dk between the wavenum-
bers k and k + dk and with not much overlap, we then have:

〈I〉(x) =

∫ ∞
0

2S(k)(1 + <eikx) dk
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= 2<
∫ ∞

0

S(k)(1 + eikx) dk

=

∫ ∞
0

S(k)(1 + eikx) dk +

(∫ ∞
0

S(k)(1 + eikx) dk

)∗
=

∫ ∞
0

S(k)(1 + eikx) dk +

∫ ∞
0

S(k)∗(1 + e−ikx) dk

We then define S(k) for negative k for convenience: S(−k) = S(k)∗. Then,

〈I〉(x) =

∫ ∞
0

S(k)(1 + eikx) dk +

∫ ∞
0

S(−k)(1 + e−ikx) dk

=

∫ ∞
0

S(k)(1 + eikx) dk +

∫ 0

−∞
S(k)(1 + eikx) dk

=

∫ ∞
−∞

S(k)(1 + eikx)

= Itot + F−1
[
S(k)

]
⇒ S(k) = F

[
〈I〉(x)− Itot

]
where Itot is the total intensity of the light (integrated across all wavelengths).
However, because these “Fourier Transform Spectrometers” have only a finite
length and the Fourier Transform has infinite bounds, the measured spectrum
S(k) cannot be equal to S(k). This can be thought of as being due to
the infinitely-defined 〈I〉(x) being what one would measure if one had an
infinitely long spectrometer, and the measured intensity function 〈I〉(x) being
equal to a 〈I〉 multiplied by a Π function. For a spectrometer whose mirror
can be moved over a total range X/2, the range in x is in fact X; supposing
that the centre of the mirror’s range (i.e. X/4 from either end) corresponds
to a path difference of 0, x is therefore measured between −X/2 and X/2,
so the Π function is Π(x;X). We then have:

S(k) = F
[(
〈I〉(x)− Itot

)
Π(x;X)

]
∝ F

[
〈I〉(x)− Itot

]
∗F

[
Π(x;X)

]
= S(k) ∗ sinc

(
kX

2

)
i.e. the true frequency spectrum is smeared out. Returning to the case
where two wavelengths were present at k0 ± ∆k, we see that for the two
delta functions in S(k) to still be resolvable after the smearing, the sinc at
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k0 +∆k must lie on the minimum of the sinc at k0−∆k. Thus 2∆k = 2π/X.
To derive the spectral resolution ∆λ/λ0, we note that kλ = 2π, which is
constant, and so k dλ + λ dk = 0, so |∆λ|/λ0 = dk/k0. The difference in
wavenumber between k ±∆k is dk = 2∆k, so we have:

|∆λ|
λ0

=
2∆k

k0

=
2π

X

λ0

2π

=
λ0

X

which can be compared with the resolution of a diffraction grating, 1/mN .
FTS therefore usually has higher (spectral) resolution than diffraction grat-
ings, but requires many measurements rather than just a single image.

4.2 Thin Film Interference

The path difference between the interfering waves must be calculated taking
into account the refractive index n of the thin film; n reduces c, so reduces
λ, so increases k. Additionally the reflection at the lower surface introduces
a π phase shift (as the impedance of the air is smaller than the impedance
of the film). The total phase difference is therefore:

φ2 − φ1 = k(n AB + n BC − AD) + π

= k

(
2nd

cos θ
− 2d tan θ sin θi

)
+ π
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Using Snell’s Law,

= k

(
2nd

cos θ
− 2d tan θn sin θ

)
+ π

= k
2nd

cos θ
(1− sin2 θ) + π

= 2nkd cos θ + π

The intensity is therefore obtained as:

〈I〉 = I0

(
1−<e2inkd cos θ

)
or equivalently expressed in terms of λ. This assumes that the amplitudes
of the two beams are equal, but this can be shown to be the case only when
the impedances (and thus ns) of the two media are the same! Otherwise the
fringes occur at the same frequency, but with an offset and smaller ampli-
tude, giving a lower fringe contrast.

Maxima occur for 2nkd cos θ = (2m+ 1)π, i.e.:

nd cos θ =
2m+ 1

4
λ

This can be viewed as either a condition on the θs for which the maxima
occur (fringes of equal inclination), or a condition of the d (fringes of equal
thickness) for a film which varies in thickness.

4.3 Fabry-Pérot Etalon

The above analysis ignored the possibility of repeated reflections in the film,
which would cause a third wave to join, and a 4th etc. This is because for
most films (e.g. bubbles) the reflection coefficient is as low as 0.04, but the
Fabry-Pérot etalon makes use of higher reflection coefficients of around 0.97,
consisting of essentially some air sandwiched between two mirrors. Assuming
the reflection and transmission coefficients r and t are real, it can be seen
on the diagram below that each interfering wave has an amplitude of r2 and
a phase of 2kd cos θ both relative to the previous wave (this is essentially
the TFI phase with n = 1, and with an extra π phase shift because of
the additional reflection). We note here that the FPE is usually used at
essentially normal incidence, so the successive wave is r2e2ikd relative to the
previous.
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Taking into account the transmission coefficients, the total output amplitude
is then:

A =
∞∑
n=1

r2ne2inkdtt′

=
∞∑
n=1

RneinδT

=
T

1−Reiδ

where R = r2, T = tt′, and δ = 2kd. The intensity is then given by:

I = |A|2 =
T 2

(1−R cos δ)2 +R2 sin2 δ

=
T 2

1− 2R cos δ +R2

which also gives a fringe pattern as a function of δ, that is, of d. The
half-width of the peaks δ1/2 is the (typically small) change in δ required
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to reduce the intensity to half its maximum value (the max value is achieved
for δ = 2πm), which is T 2/(1−R)2. We therefore have:

1− 2R cos δ1/2 +R2 = 2(1−R)2)

1− 2R +Rδ2
1/2 +R2 = 2(1−R)2

δ2
1/2 =

(1−R)2

R

δ1/2 =
1−R√
R

The finesse F of an FPE is the width between successive peaks in δ (equal
to 2π) divided by the FWHM of the peaks in δ (equal to 2δ1/2). Thus we
have:

F =
π
√
R

1−R
F becomes very high as R→ 1; for r = 0.97, F = 52.

If two wavelengths are present, there will be two sets of fringes. The chro-
matic resolving power of the etalon, λ/∆λ is derived as follows:

δ = 2kd⇒ dδ = 2d dk = δ
dk

k

2δ1/2 = δ
∆λ

λ
= 2mπ

∆λ

λ
λ

∆λ
= m

2π

2δ1/2

= mF

which can be very high, as the FPE is often used at high m

A final quantity of interest is the free spectral range: the range of wave-
lengths for which the mth order peak of the lowest wavelength overlaps with
the m+1th of the highest wavelength. We have 2d = mλ, so 0 = m dλ+λ dm,
where m is large so taking a differential is justified. dλ is the free spectral
range and dm is 1; we therefore have:

FSR =
λ

m

– not very big. The FPE is therefore best at distinguishing very accurately
between two very similar wavelengths.
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