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0 Maxwell’s Equations

∇ ·D = ρf (1)

∇ ·B = 0 (2)

∇×E = −Ḃ (3)

∇×H = Jf + Ḋ (4)

0.1 Other relevant equations

Divergence & Stokes:∫
V

∇ ·K dV =

∮
∂V

K · dS;

∫
S

∇×K · dS =

∮
∂S

K · dr

Continuity (follows from the divergence of (4)) and Conduction (Ohm’s law):

∇ · Jf = −ρ̇f ; J = σE

where σ is the material’s conductivity (inverse of resistivity).

1 The Fields

1.1 E

A charge q in an E field experiences a force:

F = qE
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1.2 D

The D field is defined as:
D = ε0E + P

P is the polarisation density, which accounts for dipoles created in a dielectric
material due to an external E field. In the linear regime, P = χeε0E, where
χe is the electric susceptibility (in general a tensor). We thus have:

D = (1 + χe)ε0E

= εε0E

where ε = 1 + χe is the relative permittivity of the medium.

1.3 B

A moving charge in a B field experiences a force:

F = qv ×B

Because of (2) and the fact that ∇ · (∇ ×K) ≡ 0, the B field can always
be written as the curl of a different vector field, A, so we have B = ∇×A.
Because ∇ ×∇φ ≡ 0, the A field is actually only defined up to a gradient
of an arbitrary scalar field, as well as an arbitrary constant, and A is often
chosen so that ∇ ·A = 0 (“Coulomb gauge”)

1.4 H

The H field is defined as:

H =
B

µ0

−M

M is the magnetisation, which accounts for dipoles created in a magnetic
material. This may be due to an external B field, or the material may be a
permanent magnet in which case a M field exists even with 0 external field.
In the linear regime, M = χmH , where χm is the magnetic susceptibility
(also in general a tensor). We thus have:

H =
B

µ0

− χmH

=
B

(1 + χm)µ0

=
B

µµ0

where µ = 1 + χm is the relative permeability of the medium.
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2 Static cases

2.1 Electrostatics

2.1.1 No dielectrics

Here (1) and (3) become:

∇ ·E =
ρ

ε0
(5)

∇×E = 0 (6)

since D becomes equal to ε0E and ρf = ρ as there is no bound charge.
(5)’s integral form (Gauss’ Law) is useful if the system has some degree of
symmetry: ∮

∂V

E · dS =
1

ε0

∫
V

ρ dV

where the LHS is often called the electric flux, and often reduces to a scalar
multiple of the constant |E| if there is some symmetry. From this the E
around a uniform sheet charge, a uniform line charge, and a uniform point
charge, are easily derived.
(6) means that we can write E as the gradient of a scalar field −V (defined
to within an arbitrary constant), so E = −∇V and ∇2V = −ρf

ε0
. Then, for

an unbounded region we have, using the Green’s function for the Laplacian
with V going to zero at infinity:

V (r) =
1

4πε0

∫
R3

ρ(r′)

|r − r′|
d3r′

Other boundary conditions often include the presence of conductors, which
in electrostatics are equipotentials, having constant V (usually taken as 0) on
their surface. These are generally harder to solve, and may be solved using
the method of images or other methods, though if any satisfactory solution
is found, then according to the uniqueness theorem it is the only solution (to
within an arbitrary constant, which is present in V anyway). The E field
can then be found from the V so derived.

2.1.2 Dielectrics

∇ ·D = ρf (7)

∇×E = 0 (8)
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(5) is in fact generally true, as long as bound charge is included in this
equation. Also, ∇ · P = −ρb, and so ∇ ·D = ρ − ρb = ρf ; this motivates
the definition of D, as it automatically “accounts for” the bound charge and
we only have to worry about the free charge. If we insisted on only using E,
we would always have to consider the P and where the ρb was, but using D
we are saved this effort.
At a boundary between two dielectric materials with a different ε, the normal
component of D is continuous: there is no free charge contained within a
pillbox enclosing a portion of the boundary, so there is no net flux of D.
That of E is discontinuous due to the bound surface charge created by the P ,
however the parallel component of E is continuous, because of (8). From this
the E around dielectric slabs and spheres abound can be derived, particularly
if the dielectric is placed in an existing uniform field E0. It is often found
that:

P =
χ

1 + nχ
ε0E0

where 0 < n < 1. For a cylinder, n = 1/2; for a sphere, n = 1/3.

2.2 Magnetostatics

2.2.1 No magnetics

(2) and (4) become:

∇ ·B = 0 (9)

∇×B = µ0J (10)

since H becomes equal to B/µ0 and Jf = J as there is no bound current.
(10)’s integral form (Ampère’s law) is useful if there’s symmetry:∮

∂S

B · dr = µ0

∫
S

J · dS

The B around a wire and solenoid can then be calculated.
Because B = ∇ ×A, ∇ × (∇ ×A) = ∇(∇ ·A) −∇2A and ∇ ·A = 0
(assuming Coulomb gauge), (10) gives:

∇2A = −µ0J

Poisson’s equation again, though in vector form. As before we can then write:

A =
µ0

4π

∫
R3

J(r′)

|r − r′|
d3r′
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And taking the curl of this, we get (eventually!):

B =
µ0I

4π

∫
R3

J(r′)× (r − r′)

|r − r′|3
d3r′

Alternatively, assuming current only travels along a thin wire, we can write
JdV = JSdr = Idr, and so the volume integral becomes a line integral as
we have assumed a constant (small) area:

B =
µ0

4π

∫
C

dr′ × (r − r′)

|r − r′|3
d3r′

— the Biot-Savart Law.
In regions of 0 current, (10) becomes homogeneous and we can in fact write
B = −µ0∇φm, the “magnetic scalar potential”. This has limited usability
and is often multivalued in the regions around currents, though it can be
useful if far away, especially if dealing with magnetic dipoles.

2.2.2 Magnetics

∇ ·B = 0

∇×H = Jf

The difference to the previous subsubsection is that now there is a M field
(included in H), and we have to only consider the free currents, since bound
currents are now involved. (10) is also generally true, if bound currents are
included. Also, ∇×M = J b, and so ∇×H = µ0J

µ0
− J b = Jf , motivating

the definition of H , which thus automatically accounts for currents caused
by M .
Similarly to dielectrics, at the boundary between two surfaces with different
µ the normal component of B is continuous (because ∇ ·B = 0) but that
of H is discontinuous due to the surface currents created by M ; the parallel
component of H is continuous because Jf = 0. Similar problems to those
posed in electrostatics can then be tackled, as well as electromagnets.
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3 Some consequences

3.1 Dipoles

3.1.1 Electric dipoles

This is an electrostatic situation. We may use Gauss’ Law to find that the
E and V around a single charge q to be:

E =
q

4πε0r2
er ⇒ V =

q

4πε0r

where the arbitrary choice of limr→∞ V = 0 has been made. Now consider
two equal and opposite charges, positioned at r and r + δr. The V field due
to the two charges is then:

V =
q

4πε0

(
1

r
− 1

|r + δr|

)
=

q

4πε0

(
1

r
− (

1

r
− δr · r

r3
+ ...)

)
≈ qδr · r

4πε0r3
=

p · r
4πε0r3

where p = qδr; the electric dipole moment. It is usually convenient to define
the z-axis to be parallel to p, which gives:

V =
p cos θ

4πε0r2

Unlike prior expressions for V , this one drops off as 1/r2, as the numerator
now has a length dimension in p. From this we can then derive E = −∇V :

E =
p

4πε0r3
(2 cos θ er + sin θ eθ)

This is a classic field.
If the dipole is placed at a fixed point in an external E field, there will be a
couple on the dipole. This couple can be easily shown to be:

G = p×E

Alternatively, if the dipole’s centre is allowed to move, but the dipole’s ori-
entation is fixed (i.e. the opposite situation), the net force on the dipole can
be shown to be:

F = (p ·∇)E

= ∇(p ·E)
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since now p is now a constant. Interestingly, both the torque from before
and the force just derived can be thought of as being the result of the dipole
possessing a potential energy U = −p ·E when in the field.

3.1.2 Magnetic dipoles

Unlike electric dipoles, magnetic dipoles create the simplest magnetic field
possible (i.e. the simplest field with 0 divergence). It can be shown that
when an infinitesimal loop of current I around a surface dS is placed inside
a magnetic field B, the loop experiences a torque:

dG = IdS ×B

suggesting a definition of a magnetic dipole moment m = IS. This has
essentially the same properties as the electric dipole, and when on its own it
generates a B field :

B =
µ0m

4πr3
(2 cos θ er + sin θ eθ)

almost identically to the electric case.

3.2 Energy

In electrostatics, it is derived rather easily that:

U =
1

2

∫
R3

ρfV dτ

where U is the potential energy of the setup and V is the potential at a
certain position. We can consider this potential energy, arising due to the
placement of charges next to each other, as being “located” in the electric
field, since there’s not really anywhere else to place it. Anyway, we then
have:

U =
1

2

∫
R3

(∇ ·D)V dτ

=
1

2

∫
R3

[∇ · (DV )−D ·∇V ] dτ

=
1

2

∫
R3

D ·E dτ

where we assumed that V goes to 0 at infinity, and used the divergence the-
orem with the identity ∇ · (Fφ) = φ∇ · F + F ·∇φ, to derive this elegant
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expression. We can thus posit that the energy density stored in the electric
field is then 1

2
D ·E.

A similar argument goes for magnetostatics. Consider a wire wound very
tightly into a coil. If a current is passed through it, there will be a magnetic
field through the middle, and if this current is time-varying then the change in
the magnetic flux through the wire will generate an emf across the two ends of
the wire, given by Φ̇. But Φ is proportional to the magnetic field, which (one
can show by deriving the magnetic field within a solenoid) is proportional to
the current. So we write Φ = LI (where L is the self-inductance) and the
emf as Lİ. The power then dissipated is:

P = LİI

=
1

2

∂

∂t

(
LI2
)

⇒ U =
1

2
LI2

=
1

2
ΦI

=
1

2

∫
wire

IB · dS

=
1

2

∮
wire

IA · dr

=
1

2

∫
R3

A · J dτ

=
1

2

∫
R3

A · (∇×H) dτ

=
1

2

∫
R3

[H · (∇×A)−∇ · (A×H)] dτ

=
1

2

∫
R3

H ·B dτ

where we assumed that A goes to 0 at infinity, and used the divergence
theorem with the identity ∇ · (F ×G) = G · (∇ × F ) − F · (∇ ×G); we
assign the energy density stored in the magnetic field is 1

2
B ·H (it is often

written this way round).
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4 Electromagnetic Waves

Note: because there are more symmetries between them, it becomes more
convenient to use E and H to describe these waves, rather than E and B

4.1 Free Space

Maxwell’s Equations become:

∇ ·E = 0 (11)

∇ ·H = 0 (12)

∇×E = −µ0Ḣ (13)

∇×H = ε0Ė (14)

Taking the curl of, say, -(13) and using ∇× (∇× F ) = ∇(∇ · F )−∇2F ,
we obtain:

∇2E = µ0∇× Ḣ

= µ0ε0Ë

which is the wave equation for c = 1/
√
µ0ε0. Let there be light.

Similarly, taking the curl of -(14) gives:

∇2H = −ε0∇× Ė

= µ0ε0Ḧ

giving an identical wave equation.

4.1.1 Plane waves

Plane waves have no variation perpendicular to their direction of travel. We
define the vector k to be in the direction of travel, with magnitude 2π/λ
where λ is the wavelength. Also, the equation ∇eik·r = ikeik·r will be
important.
We can write a plane wave E field as E0e

i(k·r−ωt) (where E0 ·k ≡ 0), and so
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from (13) and ∇× (φF ) = ∇φ× F + φ∇× F ,

−µ0Ḣ = ik ×E0e
i(k·r−ωt)

⇒H =
k

µ0ω
k̂ ×E0e

i(k·r−ωt)

⇒H0 =
1

µ0c
k̂ ×E0

=

√
ε0
µ0

k̂ ×E0

=
1

Z0

k̂ ×E0

where Z0 =
√

µ0
ε0

, the impedance of free space, is the ratio of the magnitudes

of the E and H fields in a vacuum. In a general material this ratio is the

general impedance Z =
√

µµ0
εε0

.

4.2 Energy Transfer

4.2.1 Work on charges

If we briefly suppose that there are actually charges present, then there is
not only potential energy stored in the E and H fields of the wave itself
(and energy transfer as the wave propagates), but also kinetic energy as the
E field does work on the charges present. The power of this interaction is:

Pcharges =

∫
R3

dqE · v

=

∫
R3

E · ρvdτ

=

∫
R3

E · Jdτ

4.2.2 The Poynting Vector

Consider the vector N = E ×H and its divergence:

∇ ·N = ∇ · (E ×H)

= H ·∇×E −E ·∇×H

= H ·
(
−µ0Ḣ

)
−E · (J + ε0E)

= − ∂

∂t

(
1

2
µ0H ·H

)
− ∂

∂t

(
1

2
ε0E ·E

)
−E · J
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We can therefore interpret the Poynting vector N as a power flux per unit
volume; in free space we simply have J = 0. We see that it has magnitude
|N | = |E||H| = |E|2/Z. Like the fields themselves, the Poynting vector
varies in magnitude along a wave, but unlike the fields the Poynting vector
is always in the same direction:

N = E ×H

= <E0e
i(k·r−ωt) ×<

(
1

Z0

k̂ ×E0e
i(k·r−ωt)

)
=
|E0|2

Z0

cos2 (k · r − ωt) k̂

where we see that the rms value of |N | is |E|2/2Z.

The Poynting vector can be used to quantify the radiation pressure R ex-
erted by electromagnetic radiation, using the relationship for light E = pc.
This pressure is given by:

R =
1

A

dp

dt

=
1

Ac

dE

dt

=
N

c

4.3 Plasmas and Metals

Now we consider what happens when EMR is present within materials, ignor-
ing boundaries and also net charge which is probably 0. Maxwell’s Equations
become:

∇ ·E = 0

∇ ·H = 0

∇×E = −µµ0Ḣ

∇×H = Jf + εε0Ė

where we are supposing that there is no net charge of any kind anywhere (or
alternatively that ε is constant).

4.3.1 Plasmas

Here we suppose that we have a sparse concentration of electrons which are
all vaguely in the vicinity of a parent ion, and that this concentration is so
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small that Jf = 0. Oh and µ = 1 because everything is so hot that it’d be
past everything’s Curie temperature anyway. We then have:

∇×E = −µ0Ḣ (15)

∇×H = εε0Ė (16)

and
∇2E = µ0εε0Ë

and likewise for H . To find what the solutions to this look like, we therefore
need to find out what ε is.

First let’s look at the Lorentz force on the particle:

mer̈ = q(E + v ×B)

Think about the magnitude of the two terms of the force. H is smaller than
E by a factor of Z, so B is smaller by a factor of c. Thus when v << c,
as we will assume, the magnetic force makes very little contribution and we
have:

mer̈ = qE

If we are considering the response of electrons in an oscillating electric field
E = E0e

i(k·r−ωt), we obtain:

r =
e

meω2
E

If there are N electrons per unit volume, the P that this instantaneous dis-
placement induces is −Ner, which we can set equal to χeε0E to give:

χe = − Ne2

ε0meω2

= −
ω2
p

ω2

where ω2
p = Ne2

ε0me
≈ 182π2N , which gives an easy expression for the frequency

itself: 9
√
N/m−3. We can now find the relative permittivity, refractive index

and dispersion relation of the plasma:

⇒ ε = 1 + χe = 1−
ω2
p

ω2

⇒ n =
√
ε =

√
1−

ω2
p

ω2

⇒ ω =
kc

n
= kc

(
1−

ω2
p

ω2

)−1/2
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If ω < ωp, we find that χe < −1, ε < 0 and n ∈ I; this corresponds to
the field oscillating at such a low magnitude that the dipoles induced get
sooo large that they more than cancel out the original E field. You may
remember that we had earlier the “wave” equation ∇2E = µµ0εε0Ë, but if ε
is negative then the solutions are exponential (decays, to be physical). Setting

ε = 1 − ω2
p/ω

2 = −β2 (and µ = 1), we have ∇2E = −β2

c2
Ë, and solutions

like E = E0e
−ωβ

c
k̂·r−iωt. This is no ordinary wave; this is an evanescent

wave, which exponentially decays with distance into the plasma (supposing
we have some kind of transmitter within the plasma, or a boundary between
a vacuum and a plasma but then we would have to modify ∇ ·E = 0) with
decay constant:

δ =
c

ωβ
=

c

ω

√
ω2
p

ω2 − 1

which clearly depends a lot on just how much lower ω is than ωp.

What about the H field? Well going back to (16) and positing a similar
functional form we obtain:

−ωβ
c
k̂ ×E0 = iωµ0H0

⇒H0 =
iβ

µ0c
k̂ ×E0

=
iβ

Z0

k̂ ×E0

Now the fields are π/2 out of phase! As a consequence, the N vector becomes:

N = <E ×<H

= −E0 ×
(
k̂ ×E0

) β

Z0

cos(ωt) sin(ωt)e−2
ωβ
c
k̂·r

= |E0|2k̂
β

2Z0

sin(2ωt)e−2
ωβ
c
k̂·r

which has a time average of 0 — on average no energy is being transferred,
though it is sloshing back and forth a lot as it is withdrawn and deposited
into the fields.

4.3.2 Metals

In metals, it is usually a good approximation that Jf = σE, and we obtain:

∇×E = −µµ0Ḣ

∇×H = σE + εε0Ė
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If we then try the same thing as at the beginning of this section, we obtain:

∇2E = µµ0

(
σĖ + εε0Ë

)
(17)

and an identical equation for H . Here we do not neglect the σ — in fact
we will see that it dominates. Using (15) and positing complex exponential
solutions, we obtain:

∇2E = µµ0

(
−iωσE − ω2εε0E

)
= −ω2µµ0ε0

(
ε+

iσ

ωε0

)
E

If we were dealing with insulators, whose dielectric constants behave as we
would expect, the term proportional to σ would be 0. In a metal σ is (for-
tunately) not 0, so what we do is define an “effective dielectric constant” ε′,
equal to ε + iσ

ωε0
, so that we can analyse EMR in a metal like we would in a

dielectric. However we haven’t really analysed it in a dielectric so what was
the point.

Anyway. In a metal it is usually the case that the conductivity is so high
that the real part of ε′ is negligible and it becomes essentially imaginary. We
are therefore left with:

∇2E = −iωµµ0σE

So how does the E field vary spatially? or in other words, what is its k? In
order for the above equation to be satisfied, we see that the field must be
given by:

E = E0 exp

(
−1− i√

2

√
ωµµ0σk̂ · r

)
e−iωt

= E0 exp
(
−k̂ · r

δ

)
exp

(
ik̂ · r

δ

)
e−iωt

where δ =
√

2
σωµµ0

. This is technically still a wave, since there is some com-

plex spatial oscillation, but it decays equally as rapidly as it oscillates. We
see therefore, that if we have some EMR incident on a conducting surface
[and we neglect all sorts of things, probably reasonably] then it will only get
a distance δ into the wire before it is attenuated by a factor of e. As such
δ is often therefore called the skin depth of the material, and for copper at
100MHz δ is about 6.5µm, motivating the thin connotation of the name!
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As for the H field, we have again:

iωµ0H0 = −1− i
δ

k̂ ×E0

⇒H0 =
1 + i√

2

√
2

δωµ0

k̂ ×E0

where the important takeaway is that the H field is π/4 out of phase with
the E field. The N vector now has an interesting form:

N = E0 ×
(
k̂ ×E0

) √2

δωµ0

cos(ωt) cos
(
ωt+

π

4

)
exp

(
−2k̂ · r

δ

)
= |E0|2k̂

√
2

δωµ0

[
1

2
cos
(

2ωt+
π

4

)
+

1

2
√

2

]
exp

(
−2k̂ · r

δ

)
which does have a net k-ward direction, but this also oscillates and decays,
occasionally directed opposite to k.

These results have significant consequences for the movement of AC cur-
rents in wires. If a wire carries an AC current, there will be a time-varying
E field directed up and down the wire to drive the current. It turns out
that the electric field within a wire can be described (roughly) as like the
electric field of an EM wave when it is incident on the wire. If the current
is propagating along the x-axis the E field along the z-axis (perpendicular
and into the wire, so that z = 0 on the surface and z increases towards the
centre) can be thought of as:

E0 exp
(
−z
δ

)
exp

(
i
z

δ

)
e−iωt

with a corresponding J of:

J0 exp
(
−z
δ

)
exp

(
i
z

δ

)
e−iωt

The total current in the wire of radius a is then given by:

I = J0e
−iωt

∫ a

0

e
−1+i
δ

z2π(a− z)dz ≈ 2πJ0e
−iωt

∫ a

0

e
−1+i
δ

zadz

= 2πaJ0e
−iωt δ

−1 + i

(
e

−1+i
δ

a − 1
)
≈ 2πaJ0e

−iωt δ

1− i
= πaJ0δ(1 + i)e−iωt

=
√

2πaJ0δe
−i(ωt−π

4
)

⇒ 〈I2〉 = (πaJ0δ)
2
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The power/unit length can also be calculated, along with the effective resis-
tance per unit length. The takeaway is that said resistance is the same as if
all the current were travelling in a thin shell of thickness δ.

5 Waveguides

Until now (in life), it is assumed that for a wire the whole thing is at the same
voltage. However, if the Fourier components of an incident wave are at a very
high frequency, the “wavelength” of the signal will be less than the length
of the wire, and the voltage will vary along the wire (as will the current).
Alternatively, the wire may just be really long (e.g. kilometres), and so the
same effect occurs. Wires (and other systems) capable of transporting these
voltages and currents are called transmission lines ; The term waveguide refers
to carriers where the wavelength is much smaller compared to the dimension.

5.1 Transmission Lines

An illustrative setup consists of two (superconducting) parallel wires, stretch-
ing a long way into the distance. There will be some parasitic inductance
and capacitance due to this setup; we say that there is L and C per unit
length, so the equations will look a bit dimensionally weird. Consider a
small segment of wire, of length dz. This will have an inductance L dz, so
the voltage at z + dz will be given by:

V (z + dz) = V (z)− L dz
∂I

∂t

Also, the wire segment will have a capacitance C dz, so the current at z+dz
will be:

I(z + dz) = I(z)− C dz
∂V

∂t

From these, we can obtain the pair of equations:

∂V

∂z
= −L∂I

∂t

∂I

∂z
= −C∂V

∂t

from which we can obtain:

∂2V

∂z2
= LC

∂2V

∂z2
∂2I

∂z2
= LC

∂2I

∂z2
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describing a wave travelling at v = 1√
LC

. For a pair of parallel wires, it can
be calculated that:

L =
µ0

π
ln

(
D

a

)
C =

πε0

ln
(
D
a

)
so in fact v = 1√

µ0ε0
= c; the voltage and current waveforms move along the

wire at the speed of light (assuming everything’s ideal).

Transmission lines are really the domain of engineering, so we write for a
Fourier component:

V (z, t) = V0e
−j(kz−ωt)

and similarly for I(z, t), where ω = ck. We then have, from one of the
original differential equations:

−jkV = −jLωI

⇒ Z ≡ V

I
= Lc =

√
L

C

Z is known as the characteristic impedance of the transmission line.
Most transmission lines have a beginning and end, rather than being

infinitely long. In other words, z can only vary between 0 and, say, l. We
can think about placing components at the end of transmission lines as giving
a boundary condition to the wave equation at z = l. For example, we might
have a resistor of resistance/impedance Z at the end - this corresponds to
imposing V = IZ at the terminal, but this is already true, so no extra
restrictions are placed on it. Such “impedance-matched” resistors lead the
line to behave as if it were infinite. Another example would be a free or
short-circuited end, i.e. where it is imposed that I(l, t) = 0 or V (l, t) = 0
respectively. However, because V = IZ at all points on the wire, we have
in both cases that both V (l, t) and I(l, t) are equal to 0 at the end. This
sets up standing wave solutions, but more practically means that if a pulse
is sent from the start of the line, it will have to be somehow reflected from
the other end in order to maintain the boundary condition.

5.1.1 Reflections on Transmission Lines

A signal with a range of Fourier components Vi = Vi0e
−j(kz−ωt) is sent out

along a transmission line, creating a current Ii = Vi0
Z
e−j(kz−ωt). It reaches the
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end of the line (previously z = l, but here we will define that to be z = 0
to give an easier sense of what’s coming from where), where it encounters
an impedance Zt, and a reflected signal is produced, with components Vr =
Vr0e

−j(−kz−ωt) and currents Ir = −Vr0
Z
e−j(−kz−ωt) (as they are headed in the

opposite direction). We have:

Zt =
Vi(0, t) + Vr(0, t)

Ii(0, t) + Ir(0, t)

=
Vi0e

−j(−ωt) + Vr0e
−j(−ωt)

Vi0
Z
e−j(−ωt) − Vr0

Z
e−j(−ωt)

=
Z + rZ

1− r

where r ≡ Vr0/Vi0. Incidentally, from this we obtain that:

r =
Zt − Z
Zt + Z

confirming the above analysis which suggested that if Zt = Z there would
be no reflection. Zt can be expressed in terms of the input impedence Zi,
defined as V (−l, t)/I(−l, t). We thus have:

Zi =
Vi(−l, t) + Vr(−l, t)
Ii(−l, t) + Ir(−l, t)

=
Vi0e

−j(−kl−ωt) + Vr0e
−j(kl−ωt)

Vi0
Z
e−j(−kl−ωt) − Vr0

Z
e−j(kl−ωt)

= Z
ejkl + re−jkl

ejkl − re−jkl

= Z
(Zt + Z)ejkl + (Zt − Z)e−jkl

(Zt + Z)ejkl − (Zt − Z)e−jkl

= Z
Zt cos(kl) + jZ sin(kl)

Z cos(kl) + jZt sin(kl)

A particularly interesting case is for kl = π/2, i.e. a quarter-wave line. In
this case (i.e. for this l and this frequency component), we have Zi = Z2

Zt
.

This probably means that there is no reflection at the input terminal, and
all of the “source input” is absorbed by the line.

5.2 Waveguides

The simplest waveguides consist of metal rectangular tubes, within which
electromagnetic waves propagate, though these waves have subtle differences
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to those previously seen. Let the waveguide have a width a and a height
b, with the wave propagating in the z-direction. We then have simply the
equations (11-14) which describe any electromagnetic wave, but now we have
some specific boundary conditions.

The walls of the waveguide are assumed not just to be conductors, but
perfect conductors, i.e. with an infinite conductivity. If there were any E
field along the surface then this would therefore lead to a current which
would instantaneously cancel out the E field. If you prefer, from the metal’s
perspective, the charges within it move so quickly that from their perspective
the situation is essentially static, and in electrostatic situations the curl is zero
so there is no parallel component at the walls. Secondly, there is apparently
no magnetic field inside the conductor, so the normal component of H at
the walls must be 0.

There are two types of modes that a waveguide can support. One, the
TEmn modes, have the E field everywhere transverse to the z-direction – that
is, Ez = 0. These modes must have Ex(x, 0, z, t) = Ex(x, b, z, t) = 0, and so
Ex is made proportional to sin(nπy/b). Similarly, Ey is made proportional
to sin(mπx/a). So that they represent a travelling wave, both are made
proportional to cos(kzz − ωt). We therefore have:

Ex = Ax(x) sin
(nπy

b

)
cos(kzz − ωt)

Ey = Ay(y) sin
(mπx

a

)
cos(kzz − ωt)

Imposing ∇ ·E = 0 gives:

∂Ax
∂x

sin
(nπy

b

)
+
∂Ay
∂y

sin
(mπx

a

)
= 0

We therefore have, for example:

Ax(x) = A0
an

π
cos
(mπx

a

)
Ay(y) = −A0

bm

π
cos
(nπy

b

)
which can be easily seen to work, giving:

Ex = A0
an

π
cos
(mπx

a

)
sin
(nπy

b

)
cos(kzz − ωt)

Ey = −A0
bm

π
cos
(nπy

b

)
sin
(mπx

a

)
cos(kzz − ωt)
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From this field, one can calculate the H field, for the TEmn mode:

Hx =
A0kzbm

µ0ωπ
cos
(nπy

b

)
sin
(mπx

a

)
cos(kzz − ωt)

Hy =
A0kzan

µ0ωπ
cos
(mπx

a

)
sin
(nπy

b

)
cos(kzz − ωt)

Hz = − A0

µ0ω

(
m2b

n
+
n2a

b

)
cos
(mπx

a

)
cos
(nπy

b

)
sin(kzz − ωt)

which gives ∇ ·H = 0 on sight, and we also have Hx(x = 0) = Hx(x =
a) = Hy(y = 0) = Hy(y = b) = 0 as is apparently required. Importantly,
here we see that H has a component in the direction of travel, unlike for a
regular EM wave; we say that the waveguide does not support an EM wave.

Both these fields also satisfy the wave equation, for:

ω2

c2
=
m2π2

a2
+
n2π2

b2
+ k2z

Note that kz is only real (i.e. the wave will only propagate along the waveg-
uide) if:

ω ≥ c

√
m2π2

a2
+
n2π2

b2

The ω at equality is known as the cutoff, and the cutoff frequency fc is given
by:

fc =
c

2π

√
m2π2

a2
+
n2π2

b2
=
c

2

√
m2

a2
+
n2

b2

A similar analysis can be done for the TMmn modes, but we now set
Hz = 0 and impose e.g. Hx(x = 0) = Hx(x = a) = 0 as H can have no
perpendicular component on the metal surface. We obtain:

Hx = A0
an

π
sin
(mπx

a

)
cos
(nπy

b

)
cos(kzz − ωt)

Hy = −A0
bm

π
sin
(nπy

b

)
cos
(mπx

a

)
cos(kzz − ωt)

Hz = 0

Ex = −A0kzbm

ε0ωπ
sin
(nπy

b

)
cos
(mπx

a

)
cos(kzz − ωt)

Ey = −A0kzan

ε0ωπ
sin
(mπx

a

)
cos
(nπy

b

)
cos(kzz − ωt)

Ez = − A0

ε0ω

(
m2b

a
+
n2a

b

)
sin
(mπx

a

)
sin
(nπy

b

)
sin(kzz − ωt)

Note that although TEmn modes exist for m or n being 0, TMmn modes do
not, as for either m = 0 or n = 0 all components of both E and H go to 0.
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