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1 Classical Thermodynamics

1.1 State Variables

The first principle of thermodynamics is that a system composed of a large
number of particles which can reach a steady state can be characterised by
state variables. No progress is made by trying to analyse the behaviour of 1023

particles, but progress can be made by analysing these macroscopic properties
of the system. These include pressure p, volume V, number of moles of gas
n, and temperature T, along with many others. State variables are entirely
a property of the system “as it is”, they do not depend at all on how the
system managed to reach the state they are in. This may seem obvious
for something like V (the volume of a gas doesn’t depend on how it was
compressed/expanded to reach that volume), but for other state variables
it is less obvious. Other variables, like work done W or heat transfer Q,
depend on the method used and so are not state variables.

There are two types of state variables: intensive and extensive. Intensive
state variables remain the same if the system is duplicated (including p and
T); extensive state variables double (including V and n). An extensive
variable divided by another extensive variable gives an intensive variable (for
instance, number of moles per unit volume).

1.2 The 0th Law of Thermodynamics

If two systems A and B are brought into contact so that heat can flow
between them, but no heat actually flows, the systems are said to be in
thermal equilibrium. The 0th law states that if A and a third system C are
in thermal equilibrium, and A and B are also in thermal equilibrium, then
B and C are in thermal equilibrium as well. It stands to reason that there
must be a state variable of a system which determines whether or not any
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heat will flow between them; this state variable is called the temperature,
T; the 0th law essentially states that such a quantity exists. Note that for
systems not in thermal equilibrium, 0LT does not state where the heat will
flow to or from, merely whether any heat will flow at all.

Boyle found that the quantity pV of a gas is constant at a given tem-
perature (for low pressures and far from the liquefaction temperature of the
gas). One can then arbitrarily define T by pV ∝ T. The Celsius scale is
then defined by:

TC(state) = 100
pV
∣∣
state
− pV

∣∣
mpw

pV
∣∣
bpw
− pV

∣∣
mpw

where the states mpw and bpw correspond to the melting point (0°C) and
boiling point (100°C) respectively of water.

1.3 Ideal gases

The above defines T ∝ pV. Because V is an extensive quantity, we have
V ∝ n, so we then have pV ∝ nT. It was initially thought that the pro-
portionality constant would depend on the content of the gas in question
(whether it was oxygen or nitrogen, for example), but Avogadro showed that
equal volumes of gas (of any content) have equal numbers of molecules, so
the proportionality constant should be universal, R ≈ 8.3145J K−1 mol−1.
We thus have:

pV = nRT = NkBT

referred to as an “equation of state” for an “ideal gas”; kB is simply R/NA.
Some very basic statistical dynamics gives that pV = 1

3
Nm 〈u2〉 (assum-

ing that the gas is monoatomic and the particles do not interact) so the
internal energy U (the total energy of the system, here purely kinetic) is
given by:

U ≡ 1

2
Nm

〈
u2
〉

=
3

2
pV =

3

2
NkBT =

3

2
nRT

So the kinetic energy of the system is satisfyingly proportional to the tem-
perature, when it is defined as above.

1.3.1 The 1st Law of Thermodynamics

The 1st Law of Thermodynamics essentially states that energy is conserved.
There are two different ways in which energy can be transferred to a system
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(thus increasing its U): transferring heat to it, and doing work on it. We
therefore have 1LT:

dU = δQ + δW

Note that “dQ” is meaningless, as whereas U takes a specific value that may
change, Q is simply something that can be transferred to a system, so it
makes no sense to talk of the “change in heat”. 1LT states that although δQ
and δW can take any value at all (including negative values, corresponding
to heat transfer from the system and work done by the system), their sum
corresponds to the change in U of the system.

There are many different types of work that can be done, whenever the
system moves in response to an external force. If a gas undergoes compression
or expansion, the work done is δW = −p dV. This is often taken as the
archetype of a way of doing work; if other ways of doing work are possible
(such as electrochemical work, δW = v dq), then simply replace/supplement
the −p dV term with the extra work term(s).

1.3.2 Heat Capacities

The specific heat capacity is a quantity that satisfies δQ = C dT, and takes
different values (Cp and CV ) depending on whether the gas is held at constant
p or constant V during the heat transfer. Rearranging 1LT and substituting
for δQ and δW assuming that the only work possible is gas expansion, we
obtain:

C dT = dU + p dV

=

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
dV

=
3

2
nR dT + p dV

where the partial derivatives of U are deduced from U = 3
2
nRT. This makes

it clear that Cp > CV , as in the latter case heat is only used to increase U
and thus T, whereas at constant pressure the heat may also be converted into
work – so more heat is required to cause a given change in T. At constant
volume, we have dV = 0 and so:

CV =
3

2
nR

Whereas at constant pressure, we have:

Cp =
3

2
nR + p

(
∂V

∂T

)
p

= CV + p
nR

p
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= CV + nR =
5

2
nR

We recall that both of these expressions apply only for an ideal monatomic
gas.

1.3.3 Expansions

The changes in state functions during expansions can also be derived. For an
isothermal expansion, the temperature is constant (the gas may be connected
to a reservoir), and so dU = 0 and δQ = p dV. The heat transferred to bring
about this expansion is then:

Q =

∫
δQ =

∫ V2

V1

p dV =

∫ V2

V1

nRT

V
dV = nRT

∫ V2

V1

dV

V
= nRT ln

(
V2

V1

)
where T can be brought outside the integral because it is constant in this pro-
cess. The work done in this expansion is the negative of the above quantity,
so that ∆U = 0. On a p-V diagram, the previous calculation corresponds
to the area under an isotherm at temperature T.

Adiabatic expansions have no transfer of heat, and so all the energy needed
to do expansion work is drained from the internal energy U. We have:

δW = dU = CV dT = −p dV

CV
nR

(p dV + V dp) = −p dV

(CV + nR)︸ ︷︷ ︸
Cp

p dV + CV V dp = 0

γ
dV

V
+

dp

p
= 0 where γ ≡ Cp

CV
> 1

pVγ = const.

Using the ideal gas law we also see that Vγ−1T and p1−γTγ are also
constant in adiabatic expansions. The quantity γ is called the specific heat
ratio, and for a monoatomic gas is equal to 5/3. The amount of work done
in an adiabatic expansion is simply equal to ∆U = 3

2
nR∆T.

1.4 2nd Law of Thermodynamics

The two expansion processes in the previous section were reversible processes,
meaning that the process could be “nudged” along in infinitesimal steps
which could easily be reversed. There are however many processes which are
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empirically known to be irreversible, even though 1LT does not forbid them.
If a partition, between a volume full of gas and an empty space, is removed,
then the gas irreversibly moves to fill the space (this process is called Joule
expansion); it never retreats back.

Irreversible processes are fundamentally driven by probability: the prob-
ability that each molecule is on one half of the box is 2−N, whereas the
probability that there are N/2 on each side is astronomically more probable
(by a factor N!/(N/2)! ). However, before this was known, thermodynam-
ics was all about heat engines, and Clausius and Kelvin both came up with
(equivalent) empirical observations of 2LT:

No process whose only effect is heat transfer from cold to hot is
possible

No process whose only effect is complete conversion of heat to
work is possible

Another, less formal expression of 2LT is that if no extra work is being done,
heat flows from hot to cold. In the same way as N1L is a special case of N2L,
0LT (no spontaneous heat transfer between bodies at same temperature) is
thus a special case of 2LT.

1.4.1 Carnot Cycle

Carnot demonstrated that:

� a reversible heat engine (a machine that converts heat transferred from
a reservoir and converts it into work and wasted heat) is theoretically
possible

� all reversible heat engines are equally efficient (defined shortly)

� irreversible heat engines are less efficient.

The general diagram for a heat engine is:
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We thus see that that Kelvin’s version of 2LT is saying that Q1 6= 0. The
efficiency of a heat engine is defined by η ≡ W/Q2 = 1 − Q1/Q2. The
Carnot cycle has 4 stages:

1. Isothermal expansion from VA to VB, at T2. In this stage, the work
done on the gas is nRT2 ln (VA/VB) < 0 (work is actually being done by
the gas to cause expansion); the heat Q2 = nRT2 ln (VB/VA), keeping
U constant.

2. Adiabatic expansion from VB to VC , between T2 and T1. The work
done by the gas simply 3

2
nR(T2 − T1); Q = 0 by definition of an adia-

batic expansion

3. Isothermal contraction from VC to VD, at T1. Here work is done
on the gas nRT1 ln (VC/VD). Now the actual heat transferred to the
engine is nRT1 ln (VD/VC), which is negative, but in the diagram Q1 is
actually defined as the amount of heat which flows out of the system,
so Q1 = nRT1 ln (VC/VD). If you prefer, Q1 is the magnitude of the
heat transfer.

4. Adiabatic contraction from VD to VA between T1 and T2. The work
done is 3

2
nR(T1 − T2), which again is negative; Q = 0.

The signs are often difficult to keep track of, so try to understand which
direction heat is flowing and work is being done; note that VC > (VB, VD) >
VA. Adding up all the stages, we obtain that the total work done by the heat
engine (the negative of the total work done on the system Wtot) is:

W = nRT2 ln

(
VB
VA

)
− 3

2
nR(T2 − T1) + nRT1 ln

(
VD
VC

)
+

3

2
nR(T2 − T1)

= nRT2 ln

(
VB
VA

)
+ nRT1 ln

(
VD
VC

)
= Q2 −Q1

Now from the formulae for adiabatic expansions, pVγ and so ⇒ Vγ−1T are
constant, for steps 2 and 4. Thus:

T2V
γ−1
B = T1V

γ−1
C T1V

γ−1
D = T2V

γ−1
A

⇒ VB
VC

=

(
T1

T2

) 1
γ−1 VD

VA
=

(
T2

T1

) 1
γ−1

⇒ VB
VC

=
VA
VD
⇒ VB

VA
=
VC
VD
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⇒ Q2

T2

= nR ln

(
VB
VA

)
= nR ln

(
VC
VD

)
=

Q1

T1

⇒ η = 1− Q1

Q2

= 1− T1

T2

giving an important formula for the efficiency of a heat engine.
The proof that all reversible heat engines are equally efficient is as follows:

Suppose there exists a “sub-Carnot” engine, which is reversible but less
efficient than a regular Carnot engine. If we were to use a Carnot engine
to run another Carnot engine backwards, then we would have Q′2 = Q2 and
Wo = 0. But if we use a Carnot engine to run a sub-Carnot engine backwards
with equal Q1s, then Q′2 > Q2 and there will be some positive Wo left over.
The net effect of this setup is that heat is being completely converted into
work, which violates Kelvin’s 2LT. All that has been proven at this stage is
that reversible heat engines cannot be less efficient than Carnot’s.

It is now shown that no engine, reversible or not, can be more efficient
than Carnot’s. Suppose there exists a “super-Carnot” engine (of any re-
versibility), and we use that to run a Carnot engine backwards:
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As before, the higher efficiency of the super-Carnot engine means that
more heat is drawn from the T2 reservoir and more work is obtained for the
same wasted heat Q1 as a regular Carnot engine. As such, the net effect
of using a super-Carnot engine to run a regular Carnot engine is again that
heat from T2 is completely converted into work, violating Kelvin’s 2LT. The
overall result is that all reversible heat engines have the same efficiency as
Carnot’s, and all irreversible heat engines have at most the same efficiency
as Carnot’s.

It is now shown that Kelvin’s 2LT (K) is equivalent to Clausius’ (C) (that
heat cannot be transferred from cold to hot alone), by showing that violation
of one implies violation of the other.

In the first diagram, we see that a device which violates Kelvin’s 2LT can
be coupled to a Carnot engine and cause a net heat transfer of Q1 from T1 to
T2, violating Clausius’ 2LT. Logically this shows that ¬K⇒ ¬C. The second
diagram shows a Clausius-violating engine in tandem with a Carnot engine,
with the net effect being the conversion of heat Q2 −Q1 purely into work,
in violation of Kelvin, thus ¬C⇒ ¬K. Combining the results we have:

¬C ⇐⇒ ¬K C ⇐⇒ K

that is, the two are equivalent (note that both ways around are needed to
show this).

There are other things one can do with a Carnot cycle by running it
backwards, leading to different definitions of the efficiency. One can use it as a
heat pump, in which case the efficiency is the heat moved into the hot reservoir
(like a house) divided by the work done: η ≡ Q2/W = Q2/(Q2 − Q1) =
T2/(T2− T1). As before, this is the maximum efficiency of a heat pump, and
it is clearly greater than 1. Alternatively, one can use it as a refrigerator, in
which case η ≡ Q1/W = Q1/(Q2 −Q1) = T1/(T2 − T1).

Real heat engines are irreversible, due to heat leaking, friction, and tur-
bulence, and so they have an efficiency less than the theoretical maximum.
Further, their composition often changes throughout the cycle, and the tem-
peratures of the reservoirs may not be fixed. These engines are often approx-
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imated using “Air Standard” cycles (e.g. Otto and Stirling), which do not
run in the same way as Carnot’s.

1.4.2 Classical Entropy

At this point we return to the original sign convention for the heat, whereby
heat is transferred into the system counts as positive. As such Q2 represents
positive heat and Q1 represents negative heat; in other words Qtot = Q2−Q1.
As Q2/T2 = Q1/T1, we can also write:∮

Carnot

δQ

T
=

Q2

T2

− Q1

T1

= 0

As Q2 and Q1 have the same relationship for all reversible heat engines, we
can write that: ∮

δQrev

T
≡ 0

By contrast, irreversible heat engines are at most as efficient than reversible
ones, and so have a larger Q1 for the same Q2 (and a smaller amount of work
done). Remembering that Q1 corresponds to negative heat into the system,
we therefore have: ∮

δQ

T
≤ 0

which is Clausius’ Theorem for any cycle; the equality applies if the cycle is
reversible. Breaking the penultimate integral up into two stages (where the
break comes at an arbitrary point), we then have:∮

δQrev

T
=

∫ B

A; 1

δQrev

T
+

∫ A

B; 2

δQrev

T
= 0⇒

∫ B

A; 1

δQrev

T
=

∫ B

A; 2

δQrev

T

where the 1 and 2 next to the lower bound of the integrals refers to two
different (though both reversible) integration paths. We see that the integral
of δQrev/T is independent of the path. This means that the integrand must
correspond to the differential of some (extensive) state variable, call it, oh

I don’t know, dS. So
∫ B
A
δQrev/T =

∫ B
A

dS = S(B) − S(A), regardless of
the (reversible) path taken. We note that adiabatic processes, which have
δQrev = 0, are also isoentropic, having dS = 0. Also, if we back off from the
limit to ∆S = ∆Qrev/T ⇒ 1/T = ∆S/∆Qrev we obtain (abusing notation
somewhat):

1

T
=

(
∂S

∂Q

)
rev
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What is the entropy change if an irreversible path is taken? Consider
going from A to B irreversibly, but back from B to A reversibly. According
to Clausius’ theorem:∫ B

A

δQirrev

T
+

∫ A

B

δQrev

T
≤ 0⇒

∫ B

A

δQirrev

T
≤
∫ B

A

dS⇒ δQirrev

T
≤ dS

with equality in the limit of reversibility. To find the entropy change before
and after an irreversible process, we cannot simply take

∫
δQirrev/T, as this

is not an entropy change; instead we must find a reversible process which links
the same before-and-after states, and calculate

∫
δQrev/T for that process.

However, thermodynamics does not tell you how to do this, one relies on
experience.

For a thermally isolated system, δQirrev = 0, and so using the above
equation we have another phrasing of 2LT:

dS ≥ 0 for isolated systems

It is interesting to note that the entire Universe is a thermally isolated system,
and so the entropy of the Universe can never decrease.

2 Analytical Thermodynamics

2.1 The Master Equation

Using 1LT and 2LT, we may then write the master equation:

dU = T dS− p dV

where −pdV may be replaced/supplemented by other forms of work. Note
that this equation contains only state variables, and so it must be true for
all processes, reversible or ir-, even though it was constructed for reversible
processes. Rearranging the master equation, we have for an ideal gas:

dS =
1

T
dU+

p

T
dV = CV

dT

T
+nR

dV

V
⇒ ∆S(T,V) = CV ln

(
T

T0

)
+nR ln

(
V

V0

)
which is the change in entropy for an ideal gas expanding or being heated.

From the Master Equation we can identify:(
∂U

∂S

)
V

= T

(
∂U

∂V

)
S

= −p
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from which we can obtain:(
∂S

∂V

)
U

≡ −
(
∂S

∂U

)
V

(
∂U

∂V

)
S

=
p

T

in which the first equivalence comes from the reciprocity and reciprocal the-
orems from partial differential calculus. Furthermore, using the equality of
mixed partial derivatives, we can write:(

∂T

∂V

)
S

≡ −
(
∂p

∂S

)
V

an example of a Maxwell Relation.

2.2 Thermodynamic Potentials

It is easiest to use U(S,V) when the independent variables of interest are
S and V. Practically, however, it is often easier to control other variables,
such as p or T, in which case there are certain other state variables which
are more useful to consider. Each of these also comes with its own Maxwell
Relation as a bonus.

2.2.1 Enthalpy H(S,p) ≡ U + pV

In chemical reactions, the pressure is usually constant, and it is easier if we
use a state variable whose differential depends on dp. Defining H ≡ U+pV,
we have:

dH = TdS + Vdp

Giving the relations:(
∂H

∂S

)
p

= T

(
∂H

∂p

)
S

= V ⇒
(
∂T

∂p

)
S

≡
(
∂V

∂S

)
p

For changes at constant pressure, we have dH = TdS = δQ, and so:

Cp =

(
∂H

∂T

)
p

It can also be shown that, for continuous flow processes, the difference be-
tween the enthalpies of a quantity of outgoing and ingoing fluid is simply
equal to the heat and work done on it: ∆H = Q + W.
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2.2.2 Helmholtz Free Energy F(T,V) ≡ U−TS

It is often not easy to use S as a variable, as it is difficult to “control”. One
state variable which achieves this is F; from its definition we have:

dF = −SdT− pdV

from which we obtain:(
∂F

∂T

)
V

= −S

(
∂F

∂V

)
T

= −p

(
∂S

∂V

)
T

≡
(
∂p

∂T

)
V

Alternatively, at constant temperature and volume, and under reversible con-
ditions, we can use the original definition to give:

dF = dU−TdS = δQ + δW −TdS

= −δQsurr + δW −TdSsys = −TdSuniv + δW

≤ δW

⇒ −δW ≤ −dF

This result is significant because −δW is the work done by the system. We
see therefore that −dF represents the maximum amount of energy that can
be converted into work. That this is not equal to −dU is a statement of 2LT:
some of the energy must be converted to heat.

It can be shown that, under conditions of constant T and V, the entropy
change of the universe dSuniv = −dF/T, and so under these conditions F
may only decrease.

2.2.3 Gibbs Free Energy G(p,T) = U−TS + pV = H + pV

The easiest quantities to manipulate are usually p and T, so it is often useful
to use G, which has:

dG = Vdp− SdT

Thus G is conserved in all processes which are both isobaric and isothermal,
which usefully includes phase transitions. We obtain:(

∂G

∂p

)
T

= V

(
∂G

∂T

)
p

= −S ⇒
(
∂V

∂T

)
p

≡ −
(
∂S

∂p

)
T

The final Maxwell relations. For convenience these are listed again here:(
∂T

∂V

)
S

≡ −
(
∂p

∂S

)
V

(
∂T

∂p

)
S

≡
(
∂V

∂S

)
p
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(
∂S

∂V

)
T

≡
(
∂p

∂T

)
V

(
∂V

∂T

)
p

≡ −
(
∂S

∂p

)
T

Note that these all involve all 4 of the original natural variables (T,S,p,V),
and that (p,V) and (T,S) are never the pairs involved in the derivative. In
each case, the “lower” two variables are the natural variables of the thermo-
dynamic potential from which the relation is derived; for example the first
term has V and S as the “lower” two variables, and so must be derived from
U, which has V and S as its natural variables. Also, it is important to note
that nowhere in the derivation of these relations was the ideal gas law used –
they are true regardless of the equation of state of the material in question.

One can easily show that extra forms of work (δW+ 6⊃ −pdV) would
remain tagged on the end of the dG equation above. Thus at constant
pressure and temperature (not exactly rare conditions), dG = δW+. Note
that these extra forms of work are done on the system, and so −dG is the
maximum non-pV work that can be done by a system.

It can be shown that, under conditions of constant T and p, the entropy
change of the universe dSuniv = −dG/T, and so under these conditions G
may only decrease. Note that the corresponding condition for F was at
constant volume rather than constant pressure.

2.2.4 Summary of Thermodynamic Potentials

It turns out that in statistical thermodynamics, F is usually the easiest quan-
tity to work with, along with its natural variables T and V. As such, it is
useful to derive the other three potentials in terms of F. This is done below:

U = F + TS = F−T

(
∂F

∂T

)
V

= −T2

(
∂F/T

∂T

)
V

H = F + TS + pV = F−T

(
∂F

∂T

)
V

−V

(
∂F

∂V

)
T

= F−T2

(
∂F/T

∂T

)
V

−V2

(
∂F/V

∂V

)
T

G = F + pV = F−V

(
∂F

∂V

)
T

= F−V2

(
∂F/V

∂V

)
T
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2.3 Applications of Analytical Thermodynamics

2.3.1 Specific Heat Capacities

The difference between the specific heat capacities of an ideal gas was derived
earlier, but a more general expression exists, without reference to an equation
of state:

Cp − CV = lim
δT→0

(
δQ

δT

∣∣∣∣
p

− δQ

δT

∣∣∣∣
V

)

= T lim
δT→0

(
δS

δT

∣∣∣∣
p

− δS

δT

∣∣∣∣
V

)
= T

[(
∂S

∂T

)
p

−
(
∂S

∂T

)
V

]

Now there are no Maxwell relations involving ∂S/∂T, so we must take a
different approach. Consider taking S = S(T,V), and so:

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

⇒
(
∂S

∂T

)
p

=

(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

⇒
(
∂S

∂T

)
p

−
(
∂S

∂T

)
V

=

(
∂S

∂V

)
T

(
∂V

∂T

)
p

⇒ Cp − CV = T

(
∂S

∂V

)
T

(
∂V

∂T

)
p

= T

(
∂p

∂T

)
V

(
∂V

∂T

)
p

where a Maxwell relation has been used in the final step. For an ideal gas, the
first derivative gives nR/V, and the second gives nR/p, giving Cp − CV =
Tn2R2/pV = nR, as before.

2.3.2 Expansivities and Compressibilities

Expansivities (β) measure fractional change in volume per change in temper-
ature. Depending on external conditions, we have the isobaric and adiabatic
expansivities as:

βp ≡
1

V

(
∂V

∂T

)
p

βS ≡
1

V

(
∂V

∂T

)
S

14



respectively. Compressibilities (κ) measure fractional change in volume per
change in pressure. The isothermal and adiabatic compressibilities are given
by:

κT ≡ −
1

V

(
∂V

∂p

)
T

κS ≡ −
1

V

(
∂V

∂p

)
S

These quantities enable another expression for the difference between heat
capacities:

Cp − CV = T

(
∂p

∂T

)
V

(
∂V

∂T

)
p

= T

[
−
(
∂p

∂V

)
T

(
∂V

∂T

)
p

]
[Vβp]

= T

[
1

VκT
Vβp

]
Vβp

=
TVβ2

p

κT

which may be more useful if these quantities are easier (or most accurate) to
measure.

2.3.3 Elastic Wires and Surfaces

An elastic wire has the master equation dU = TdS + Fdx, where F is the
tension and x is the extension. Incidentally, this gives the relations:(

∂U

∂S

)
x

= T

(
∂U

∂x

)
S

= F
(
∂T

∂x

)
S

=

(
∂F
∂S

)
x

Wires have the further variables A the cross-sectional area; L the unstretched
length;

Y ≡ L

A

(
∂F
∂x

)
T

α ≡ 1

L

(
∂x

∂T

)
F

the Young’s modulus and the coefficient of thermal expansion.
Similarly, elastic surfaces have dU = TdS + γdA, where γ is the surface

tension.
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3 Phase Transitions

3.1 Van der Waals Equation

There are two factors that the derivation of the ideal gas law does not take
into account: finite molecular volume, and intermolecular forces. Van der
Waals took account of the former by replacing V with V − nb, where in
practice b is a material-dependent experimentally-derived value. The net ef-
fect of the intermolecular forces is that they reduce the frequency with which
molecules collide with the wall, in a manner proportional to ρ2 ∝ (n/V)2. As
such, we have the modified equation of state:(

p +
an2

V2

)
(V − nb) = nRT

Whereas the ideal gas isotherms were simply
hyperbolae on a p−V diagram, vdW isotherms
are sort of cubic, and look like the figure on
the left. We see that at high T, the isotherms
do indeed look roughly hyperbolic. At a cer-
tain intermediate critical temperature Tc, there
is a point of inflection in the isotherm, described
as the critical point (pc,Vc). By calculating

( ∂p
∂V

)T = 0 and ( ∂
2p

∂V2 )T = 0 from the VdW equa-
tion, it can be shown that:

Vc = 3nb Tc =
8a

27b2
pc =

a

27b2

At low T < Tc, however, there is a signifi-
cant “dipping” observed. To the left of the dip,
there is little volume change in response to con-
tinually increasing pressure – this corresponds
to a liquid. To the right of the dip, the graph
begins to look hyperbolic again – a gas. In be-
tween, though, we encounter a region where if
the pressure is increased, the volume also in-
creases ; in other words κT < 0. This is not ac-
tually what happens – this prediction is a short-
coming of the vdW equation. It is corrected by
drawing a horizontal line to replace the dip, for
which there is an equilibrium between the liquid

and gaseous phases.
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If one were to hypothetically travel along the closed path ABCDA (at
constant temperature), there must be no overall change in F or G, as these
are state variables. dF = −pdV and dG = Vdp, so if ∆F and ∆G are to
be 0, we require

∮
pdV = 0. As such, the Maxwell construction is drawn so

that the area under the vdW curve is 0, as shown; the pressure at which this
line is drawn is the vapour pressure of the substance at that temperature. By
taking the envelope of the Maxwell constructions at different temperatures,
we find a sort of hill, whose peak is at the critical point, below which the
substance is in equilibrium between gas and liquid. Above Tc, the substance
cannot form a liquid. Below Tc, the substance is either liquid (left of the
hill), gas (right of the hill) (also known as a vapour when below Tc), or in
equilibrium therebetwixt (under the hill).

Generally phase changes require nucleation sites, but if very pure, a liquid
can be superheated (AB) and a gas can be supercooled (DC). Tc is the highest
temperature at which liquid and gas can coexist.

3.2 Phase Diagrams

Phase diagrams are usually p-T diagrams. Lines represent sets of (p,T)
points at which two different phases coexist. The liquid-gas line terminates
at the critical point, and begins at the end of the solid-liquid line at the triple
point of the substance, where all three phases coexist. Usually, the phase
transition lines have a positive slope. As such, at higher pressure, a greater
temperature is generally required to bring about a phase transition. [Water
is unusual in that the solid-liquid line has a negative slope, which is a conse-
quence of the unusual property that ice has a lower density than liquid water.]
The gradient of this line is given by the Clausius-Clapeyron Equation, derived
below.

When a substance reversibly goes from gas to
liquid (say), its entropy decreases, so in order for
the total entropy of the Universe to remain con-
stant, latent heat L ≡ Tpt∆Spt must be given
out to the surroundings. Consider connecting
two Maxwell constructions with adiabats, as
shown. This forms a Carnot cycle, whose ef-
ficiency is given by δW/δQ. Now δW is equal
to δp∆V, where ∆V is the change in volume
over the phase change (note that it is tempera-
ture dependent), and δQ is simply given by L,
so η = δp∆V/L. But from considerations in
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earlier chapters, η = 1−T/(T + δT) ≈ δT/T. We therefore have:

δp∆V

L
=
δT

T
dp

dT
=

L

T∆V
=

∆Spt

∆V

which is the Clausius-Clapeyron relation. Often the vapour is so much less
dense than the solid that ∆V ≈ Vvapour, which if the pressure is quite low
can be approximated using the ideal gas equation as nRT/p. We therefore
have:

dp

dT
=

L

nRT2
p

⇒ p(T) ≈ p0e
−L/nRT = p0e

−Lm/RT

4 Statistical Thermodynamics

Statistical Thermodynamics provides an explanation for the phenomena ob-
served above in terms of what is known about Nature on a microscopic scale
– atoms and quantum physics and whatnot.

4.1 Microstates and Macrostates

The microstate of a thermal system (such as a gas in a box) is the set of
all positions and velocities of the particles it contains (or, from a quantum
perspective, the joint wavefunction of all the particles). In other words, the
microstate encompasses absolutely all the information that exists about the
system at a given moment. According to the principle of a priori probability,
the system has an equal probability of existing in any of these microstates;
this is often justified by the relativistic idea that every point in space (and
indeed in velocity space) is equivalent.

The macrostate of a system is specified merely by its macroscopic prop-
erties, such as p, T, etc. A given macrostate will often have an astronomical
number of microstates corresponding to it. The system does not have an
equal probability of existing in any of the macrostates, as some macrostates
will have more microstates and therefore are more likely. The number of
microstates corresponding to a macrostate of energy E is denoted Ω(E).

If there are two systems A and B in thermal contact and equilibrium, 0LT
states that they have the same T, but this also means that ΩA(EA)ΩB(EB)
is maximised, with respect to the constraint that EA + EB = E, where E is

18



the total conserved energy. We therefore have:

d

dEA
(ΩA(EA)ΩB(E − EA)) = Ω′A(EA)ΩB(EB)− ΩA(EA)Ω′B(EB) = 0

⇒ Ω′A
ΩA

=
Ω′B
Ω

⇒ d ln ΩA

dEA
=

d ln ΩB

dEB

Thus the quantity d ln Ω / dE must be a function of T alone; we denote it
β(T) for now.

We now deduce the relative probability of each microstate of energy E. If
a system is known to be in a microstate it has Ωsys(E) = 1. If this system is
connected to a reservoir whose temperature will not change if small amounts
of energy are transferred out, it will have Etot−E energy and Ωres(Etot−E)
microstates; this is in fact the total Ω of the overall system as Ωsys = 1. The
ratios of the probabilities that the system will have energy E relative to it
having 0 energy is therefore:

P (E)

P (0)
=

Ωres(Etot − E)

Ωres(Etot)
= exp ln

Ωres(Etot − E)

Ωres(Etot)

= exp (ln [Ωres(Etot − E)]− ln [Ωres(Etot)])

≈ exp

(
ln [Ωres(Etot)]− E

d ln Ωres

dE
− ln [Ωres(Etot)]

)
= exp(−βE)

The probability of the state being in a microstate of energy E is therefore:

P (E) =
1

Z
e−βE Z =

∑
i

e−βEi

where Z is a normalisation constant known as the partition function. This
is easily adapted to if the system is known to have an energy E but there is
some degeneracy so that it could be in any one of g(E) microstates; g is the
degeneracy of an energy. In this case:

P (E) =
1

Z
g(E)e−βE Z =

∑
i

g(Ei)e
−βEi
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4.2 Internal Energy U

As one might expect, U is simply equal to the sum of the energies multiplied
by their occupation probabilities; that is:

U =
∑
i

P (Ei)Ei =

∑
iEie

−βEi∑
j e
−βEj

= − 1

Z

∂Z

∂β
=
∂ ln Z

∂β

4.2.1 Equipartition and the form of β

Consider a coordinate u ∈ (−∞,∞), of which the energy is a quadratic func-
tion αu2, as is seen with kinetic (u = v) vibrational (u = x) and rotational
(u = ω) energies. The internal energy as a result of this coordinate being a
degree of freedom is:

Uu =

∫∞
−∞ αu

2e−βαu
2

du∫∞
−∞ e

−βαu2 du

=
α 1

2

√
π

α3β3√
π
αβ

=
1

2β

which conveniently is independent of α. Furthermore, if the energy is a
quadratic function of N coordinates {ui}, each with their own value of α, it
can be seen that the integral for U{ui} of all of these coordinates separates
cleanly, and we end up with U{ui} = N/2β.

Going back to the considerations for a monatomic ideal gas (whose three
degrees of freedom are x, y, z), we saw that the internal energy was equal to
3
2
kT, but we have just shown that for three degrees of freedom the internal

energy is 3/2β. This pins down the value of β = 1/kT.

4.2.2 Heat Capacities

Now that it is known how β depends on T, the heat capacity ∂U/∂T of
various systems can be deduced. A particularly useful case is the QHO, for
which En = (n+ 1/2)~ω:

U =

∑∞
n=0(n+ 1/2)~ωe−(n+1/2)~ω/kT∑∞

n=0 e
−(n+1/2)~ω/kT =

1

2
~ω +

~ω
e~ω/kT − 1
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⇒ C ≡ dU

dT
=

~2ω2

kT2

e~ω/kT

(e~ω/kT − 1)
2

We see that in the high-temperature limit U→ kT and C → k.

4.3 Entropy S and the 3rd Law of Thermodynamics

Writing U =
∑

i PiEi, we then have:

dU =
∑
i

EidPi︸ ︷︷ ︸
δQ

+
∑
i

PidEi︸ ︷︷ ︸
δW

where we have attributed one term to δQ and the other to δW to satisfy the
first law. The intuition for these attributions is that when heat is transferred
to a system, the energy levels available do not change, but occupation of
higher energy levels becomes more probable. Conversely, when work is done
on a system, the energy levels change (think about compressing an infinite
quantum well, whose energy levels depend on the dimensions). We can thus
write a statistical expression for dS:

dS =
1

T

∑
i

EidPi

= − 1

T

∑
i

kT(ln Z + lnPi)dPi

= −k ln Z
∑
i

dPi︸ ︷︷ ︸
0 as

∑
Pi=1

−k
∑
i

lnPi dPi

= −k
∑
i

lnPi dPi

⇒ S = −k
∑
i

∫
lnPi dPi

= −k
∑
i

Pi lnPi + k
∑
i

Pi + const.

The integration constant is given by considering T = 0, and the 3rd Law of
Thermodynamics, which states:

lim
T→0

S→ 0

Initially, Nernst found that reactions approach ∆S = 0 as T→ 0, suggesting
that everything at 0K has the same S (a consequence of this is that it is
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impossible to take some gas and bring it to 0K in a finite number of steps).
Planck explained this quantum mechanically using the fact that quantum
systems have either a unique ground state, or multiple degenerate ground
states that are related by a symmetry transformation and so don’t really
count as different. Either way, the Boltzmann factor exp(−E/kT) ensures
that all particles will be in “the” ground state, and so P0 = 1, Pi 6=0 = 0. This
suggests that at 0K S is the same for every material etc., and so we may fix
it (somewhat arbitrarily) at 0. We thus have:

S = −k
∑
i

Pi lnPi

– the so-called Gibbs expression for entropy. In fact, it can be shown that
for a given mean, the most likely probability distribution is also given by
that which has the largest value of −

∑
Pi lnPi. Indeed, one can even derive

the Boltzmann factor by maximising −
∑
Pi lnPi subject to

∑
Pi = 1 and∑

EiPi = Ē.
Technically, this Gibbs expression has been derived for a system in contact

with a thermal reservoir, which is always slightly fluctuating. For an isolated
system, the entropy is not fluctuating at all, which eventually leads to a very
slightly different expression. We first convert the sum to an integral over
energy:

S = −k
∫
g(E)P (E) lnP (E) dE

Secondly, we note that very often g(E) rises very rapidly whereas P (E) falls
exponentially. As such, their product is usually peaked incredibly sharply –
a relative width of 1/

√
N for N molecules. As such, gP is almost 0 except

at the energy Ē, the average energy. The entropy is therefore very close to:

S = −k lnP (Ē) =
Ē

T
+ k ln Z

Now Z is given by:

Z =

∫
g(E)P (E) dE ≈ g(Ē)e−Ē/kT∆E

where ∆E is very small as the peak is quite sharp. This gives the simple
expression:

S = k ln
(
g(Ē)∆E

)
≈ k ln g(Ē)

An equivalent expression for a discrete set of states (that is, ones which are
separated by small but finite amounts; above we considered a continuum of
states) is:

S ≈ k ln Ωmax
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giving the familiar Boltzmann formula for entropy.
Finally, we relate F to Z, from which all the other thermodynamic po-

tentials can be derived (see 2.2.4), so long as the dependence of Z on V and
T is known:

F = U−TS =
∑
i

(PiEi + kTPi lnPi)

=
∑
i

(PiEi − PiEi − kTPi ln Z)

= −kT ln Z

5 Radiation

Radiation is analysed slightly differently than gases, because for a gas of
photons the number isn’t fixed, and the speeds are all the same.

5.1 Radiation Pressure

The spectral energy density uλ(λ; T) is the energy per unit volume of light
of wavelength λ ∈ (λ, λ+ dλ).

Aside from λ, uλ can only depend on temperature; if two connected bodies
at the same temperature had different uλ, energy would flow from one to
the other, in violation of 0LT. This leads to the somewhat counter-intuitive
phenomenon that an isothermal expansion of a gas of photons has to keep
uλ constant, so more photons are generated.

Let there be nE(E) dE photons per unit volume with energy E ∈ (E,E+
dE), and assume the angular distribution of their velocities is isotropic. Con-
sider the photons incident on a surface dA in a short time dt, at an angle θ
to the normal. The volume of photons which will be incident is c dt dA cos θ.
The proportion of photons which are travelling at an angle θ ∈ (θ, θ + dθ)
can be shown to be:

dΩ (θ)

4π
=

2π sin θ dθ

4π
=

1

2
sin θ dθ

Finally, a photon carries momentum p = E/c, so the momentum transferred
to the walls (if they are perfectly reflecting) will be 2E cos θ/c; the force
2E cos θ/c dt; and the pressure 2E cos θ/c dt dA. As such, the total radiation
pressure is given by:

p =

∫
nE(E) dE︸ ︷︷ ︸

number per volume

c dt dA cos θ︸ ︷︷ ︸
volume at θ

1

2
sin θ dθ︸ ︷︷ ︸

number at θ

2E cos θ

c dt dA︸ ︷︷ ︸
pressure at E, θ

23



=

∫ ∞
0

EnE dE

∫ π/2

0

cos2 θ sin θ dθ

=
1

3
u(T)

where u(T) is the total energy per unit volume =
∫∞

0
uλ dλ. The total

number of photons incident per unit area and time (the flux ) can also be
found by these methods:

φ =
1

dt dA

∫
nE(E) dE︸ ︷︷ ︸

number per volume

c dt dA cos θ︸ ︷︷ ︸
volume at θ

1

2
sin θ dθ︸ ︷︷ ︸

number at θ

=
c

2

∫ ∞
0

nE dE

∫ π/2

0

sin θ cos θ dθ

=
1

4
nc

5.2 Emission and Absorption

The energy hitting a unit area per unit time, in an interval dE, is therefore
E · 1

4
nE dE · c = 1

4
uEc dE. The energy per area per time in an interval dλ is

then 1
4
uλc dλ.

We then define the spectral absorptivity αλ(λ) as the fraction of photons
on (λ, λ + dλ) which are absorbed by the wall. We also define the spectral
radiant exitance eλ(λ,T) as the energy per unit area of photons on (λ, λ+dλ)
which are emitted by the wall. Taking steady-state (energy in = energy out)
for each wavelength range, we obtain:

eλ dλ = αλ
1

4
uλc dλ

⇒ eλ
αλ

=
1

4
uλc

which is Kirchhoff’s law of thermal radiation.
Black bodies are defined by α = 1; they thus have eB = 1

4
uλc. Non-

black bodies have their spectral radiant exitance defined by e = ελeB, where
ελ(λ) < 1 is the emissivity. Combining these results with Kirchhoff’s law, we
obtain simply:

ελ(λ) = αλ(λ)

5.3 Black-Body Radiation

dU = T dS− p dV ⇒
(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p
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(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

= T

(
∂p

∂T

)
V

− p

U = u(T)V, p =
1

3
u ⇒ u =

1

3
T

du

dT
− 1

3
u

⇒ du

dT
=

4

T
u ⇒ u = AT4

A is an unknown constant of integration, but we at least have the temperature
dependence. We can thus deduce the emission from a black body, given that
we deduced eB = 1

4
uλc earlier. The total emission per area per time is

therefore: ∫
eλ dλ =

∫
1

4
uλc dλ =

1

4
cu = σT4

where σ is another constant. We can actually derive the value of this, in a
similar way as is done in the Condensed Matter course by considering the
number of available quantum states. Consider a cube of side length L; the
k states available are:

π

L
(nx, ny, nz)

for a set of three positive integers. These states are uniformly distributed
in k-space, and each take up a k-volume of π3/V, as V = L3. Taking into
account the two possible polarisation directions for a photon with a particular
value of k, the number of photon states between |k| and |k|+ δk is:

δN = 2
4πk2δk

8

V

π3
=

Vk2

π2
δk ⇒ g(k) =

Vk2

π2

Using the fact that E = ~ω = ~ck and k = 2π/λ, we can obtain the density
of energy states g(E) and g(λ) also:

g(E) =
VE2

~3c3π2
g(λ) =

8πV

λ4

Now from a classical point of view, photons have two quadratic variables
in which they store energy: the electric field and magnetic field (1

2
ε0E

2 and
1
2
µ0H

2), and so would be given an energy kT each (try to avoid confusing
k, the constant, with k, the magnitude of the wavevector; forgive me for not
putting subscripts everywhere). This would lead to uλ = 8πVkT/λ4, the
Rayleigh-Jeans Law, but this is catastrophically wrong at low λ.

Planck proposed that each mode can have only an integer number of
photons in it, each with discrete energy ~ω, which gives a mean energy of a
mode of frequency ω of:

Ū(ω; T) =

∑∞
0 n~ωe−β~ω∑∞

0 e−β~ω
=

~ω
e~ω/kT − 1
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Now the spectral energy density (as a function of ω rather than λ) is found
using the expression for g(E) above:

uω(ω; T) = g(ω)Ū(ω; T)/V =
g(E)

V

δE

δω

~ω
e~ω/kT − 1

=
V(~ω)2

V~3c3π2
~

~ω
e~ω/kT − 1

=
~ω3

π2c3(e~ω/kT − 1)

– the Planck black-body spectrum. This can instead be written in terms of
λ:

uλ(λ; T) =
8πch

λ5(ehc/λkT − 1)
= λ−5f(λT)

When one tries to find the wavelength for which uλ is at its peak, one obtains
a transcendental equation for λmaxT, with the solution

λmaxT ≈ 2.9mm K

known as Wien’s displacement law.
Integrating uω over ω, we obtain the full energy density as:

u(T) =
π2k4

15~3c3
T4

which is not only proportional to T4, but also gives the value of A from
earlier. Similarly, the power flux from a black-body is now found to be:

π2k4

60~3c2
T4

fixing the constant σ to a memorable 5.67e8 watts per square metre.

6 Properties of gases

6.1 The Maxwell-Boltzmann Distribution

Consider a dilute monatomic gas, with E = 1
2
mv2. Particles can exchange

energy by colliding; each particle is like a tiny system, with the rest of the
gas as a reservoir at temperature T. As such, we can apply the Boltzmann
distribution, but we must still be careful. The microstates of equal probabil-
ity are those with a velocity in the range (v,v + dv), and so we have that
the velocity distribution varies as:

f(v) ∝ e−mv
2/kT
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which is a Gaussian centred on the origin – the most likely velocity of a
gas molecule is that it is stationary! This is counter-intuitive because our
intuition thinks more in terms of speed v than velocity v. There are a large
number of v-states with a speed on (v, v + dv), in fact the number grows
as v2 as the volume of a thin spherical shell of radius v and thickness dv is
4πv2 dv:

f(v) ∝ v2e−mv
2/kT

This is the Maxwell-Boltzmann distribution. It can be easily normalised
provided that one knows that

∫∞
0
u2e−αu

2
du = 1

4

√
π
α3 :

f(v) =
( m

2πkT

)3/2

· 4πv2 · e−mv2/2kT

From this, we can obtain, in size order:

vmp =

√
2kT

m
〈v〉 =

√
8kT

πm
vrms =

√
〈v2〉 =

√
3kT

m

The final result could be anticipated by noting that the mean kinetic energy
is 3

2
kT = 1

2
m 〈v2〉.

This distribution can also be used to rederive the ideal gas law. The
number of particles per unit with speed on (v, v + dv) approaching a wall at
an angle on (θ, θ + dθ) is:

nf(v) dv · 1

2
sin θ dθ

The number which will be inbound on an area dA in a time dt is:

nf(v) dv · 1

2
sin θ dθ · v cos θ dA dt

These will transfer momentum 2mv cos θ each, so the average pressure is:

p =

∫
nf(v) dv · 1

2
sin θ dθ · v cos θ dA dt · 2mv cos θ

dt dA

= nm

∫ ∞
0

v2f(v) dv

∫ π/2

0

cos2 θ sin θ dθ

=
1

3
nm

〈
v2
〉

= nkT

note that here n is the number of particles per unit volume (not to be confused
with n which is green) and so this does indeed agree with the ideal gas law.
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Finally, we mention Dalton’s Law – the total pressure is equal to the
sum of the partial pressures of all the species present; the partial pressure
of a species is the pressure that would be exerted if that species alone were
present. Phrased mathematically:

p = kT
∑
i

ni =
∑
i

pi

6.2 Effusion

Effusion is where molecules of a gas pass through a very small hole – the
molecule “goes through in one go”. This should be contrasted with diffusion,
whereby particles gradually bumble over.

The particle flux (in m−2 s−1) is given by the integral:

Φ =
1

dA dt

∫
nf(v) dv · dAv dt cos θ · 1

2
sin θ dθ

=
1

2
n

∫ ∞
0

vf(v) dv

∫ π/2

0

sin θ cos θ dθ

=
1

4
n 〈v〉

For an ideal gas obeying the Maxwell-Boltzmann distribution, 〈v〉 =
√

8kT/πm
and n = p/kT, and so:

Φ =
p√

2πkTm

The effusion rate out of a hole of area dA is then clearly given by Φ dA. The
Knudsen method uses this principle to determine the vapour pressure of a
liquid with total mass M :

dM

dt
= −mΦ dA = −p dA

√
m

2πkT
⇒ p = − 1

dA

√
2πkT

m

dM

dt

It is important to note that these effusing molecules do not have a Maxwell-
Boltzmann distribution. The number of molecules with speed on (v, v + dv)
is proportional to vf(v) ∝ v3e−mv

2/2kT; there is an extra factor of v.

6.3 Mean Free Path

Molecules in a gas are constantly colliding with each other; in a dilute gas
these collisions can be treated classically. As a molecule moves through space,
there is a certain volume in which if there are any other molecules a collision
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will take place. If a molecule is moving at a speed v, then in a time dt it
will sweep through a prism (usually a cylinder) of volume σv dt, where σ,
the collision cross-section, is the cross-sectional area of this prism. For two
different hard spheres, this area is given by:

σ = π(a1 + a2)2

for a single gas this simplifies to πd2; note that this uses the diameter, not
the radius.

If there are n other particles per unit volume, then in a time dt the
moving molecule will hit an average of nσvr dt particles, where vr is the
relative velocity of the two. The molecule therefore hits nσv particles per
unit time, and so the mean time between collisions is

τ =
1

nσ 〈vr〉

The mean free path is therefore given by:

λ = 〈v〉 τ =
〈v〉

nσ 〈vr〉

Now we require an expression for 〈vr〉. Consider two molecules moving at
velocities v1 and v2. Then vr = v2 − v1, and then:〈

v2
r

〉
=
〈
v2

2

〉
+
〈
v2

1

〉
− 2 〈v1 · v2〉︸ ︷︷ ︸

0

= 2
〈
v2
〉

⇒ 〈vr〉 ≈
√
〈v2
r〉 =

√
2 〈v〉

The approximations are justified in the fact that the difference between 〈v〉
and vrms are quite close together for a MB distribution. We therefore have:

λ =
1√
2nσ

=
kT√
2pσ

6.4 Viscosity η

Viscosity of a fluid causes a velocity gradient d 〈vx〉 / dz to be created between
two plates, one of which is being pushed along by a force F . When a molecule
moves from height z to z + dz, it goes from a speed 〈vx〉 (z) to 〈vx〉 (z) +
d〈vx〉

dz
dz, and so gains momentum md〈vx〉

dz
dz, which is provided by the force.
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Consider molecules travelling at an angle θ to the vertical z-axis. On
average, then, dz = λ cos θ. The number travelling upwards on (θ, θ + dθ)
and (v, v + dv) across an area dA in a time dt is:

nf(v) dv · 1

2
sin θ dθ · v cos θ dA dt

Thus the momentum transfer over this area and time is:

p =

∫
nf(v) dv · 1

2
sin θ dθ · v cos θ dA dt ·md 〈vx〉

dz
· λ cos θ

=
1

2
nmλ

d 〈vx〉
dz

dA dt

∫ ∞
0

vf(v) dv

∫ π

0

cos2 θ sin θ dθ

[where the θ integration goes from 0 to π to account for molecules moving
the other way]

=
1

3
nmλ 〈v〉 d 〈vx〉

dz
dA dt

The viscosity is defined by:

F

dA
= η

d 〈vx〉
dz

and given that F/ dA = p/ dA dt, we have:

η =
1

3
nmλ 〈v〉 =

1

3

p

kT
m

kT√
2pσ

√
8kT

πm

=
2

3σ

√
kTm

π

We see that this expression is proportional to T1/2,m1/2, d−2, n0.

6.5 Thermal Conductivity κ

When a molecule moves from height z to z+dz, it moves from a temperature
T(z) to T(z)−∇T dz, assuming the temperature gradient is directed towards
−z. Anyway, the molecule then dissipates its “excess energy” C∗∇T dz,
where C∗ is the specific heat of a single molecule, as heat.

Again dz = λ cos θ. Using the expression above for the number of
molecules travelling upwards at a certain velocity and angle, the total heat
transferred is:

Q =

∫
nf(v) dv · 1

2
sin θ dθ · v cos θ dA dt · C∗∇T · λ cos θ
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=
1

2
nC∗λ∇T dA dt

∫ ∞
0

vf(v) dv

∫ π

0

cos2 θ sin θ dθ

=
1

3
nC∗λ 〈v〉∇T dA dt

The thermal conductivity is defined (being lax about vectors and magnitudes)
by:

J = κ∇T

where J = Q/ dA dt. We can thus identify:

κ =
1

3
nC∗λ 〈v〉 =

1

3
CV λ 〈v〉

=
2CV
3σ

√
kT

πm

which we see is proportional to T1/2,m−1/2, d−2, n0, all of which except m
are the same dependence as η.

6.6 Self-Diffusion Coefficient D

Let n∗(z) be the concentration of some starred molecules of interest. The
number of excess molecules coming from a height z to a height z + dz is:∫

f(v) dv · 1

2
sin θ dθ · v cos θ dA dt ·∇n∗ · λ cos θ

=
1

2
λ∇n∗ dA dt

∫ ∞
0

vf(v) dv

∫ π

0

cos2 θ sin θ dθ

=
1

3
λ 〈v〉∇n∗ dA dt

The self-diffusion coefficient is defined by:

Φ = D∇n∗

where Φ is the number of particles per unit area per unit time. Thus:

D =
1

3
λ 〈v〉 =

1

3

kT√
2pσ

√
8kT

πm

=
2

3pσ

√
k3T3

πm

which is in fact proportional to T3/2,m−1/2, d−2, n−1,p−1.
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