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1 Friedmann-Robertson-Walker Metric

On very large scales, the Universe appears homogeneous and isotropic. The density and pres-
sure are hence uniform throughout the Universe, though they change in time. The only metrics
which satisfy homogeneity and isotropy are

ds2 = c2 dt2 −R(t)2
[

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
The metric inside the squackets uses comoving coordinates. Comoving observers have fixed
comoving coordinates (r, θ, ϕ) but the actual physical distance between them is scaled over
time by R(t). An alternative radial coordinate is χ:

r = SK(χ) ≡


sin
(√

Kχ
)
/
√
K K > 0

χ K = 0

sinh
(√

−Kχ
)
/
√
−K K < 0

 ⇒ ds2 = c2 dt2 −R(t)2
[
dχ2 + SK(χ)

2dΩ
]

A homogeneous ideal fluid has the following stress-energy tensor:

T µν =
(
ρc2 + P

)
uµuν − Pgµν ρ = ρ(t), P = P (t), uµ = δµ0

Substituting the FRW metric and this T µν into EFE gives the Friedmann Equations:

R̈

R
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3

(
Ṙ

R

)2

+
Kc2

R2
=

8πG

3
ρ+

Λc2

3
(F1, 2)

1.0.1 Density Parameters

Defining the Hubble parameter H = Ṙ/R and the Hubble constant H0 as its current value, we
can then write F2 at the current time as

H2
0 +

Kc2

R2
0

=
8πGρ0

3
+

Λc2

3
⇒ 1 =

Ωm︷ ︸︸ ︷
ρ0

3H2
0/8πG

ΩK︷ ︸︸ ︷
− Kc2

H2
0R

2
0

+

ΩΛ︷︸︸︷
Λc2

3H2
0

The dimensionless Ωm,ΩK ,ΩΛ quantify the contributions of matter, curvature, and the cos-
mological constant to the energy of the Universe today. Ωm defines a critical density ρc =
3H2

0/8πG, such that if Λ = 0, the balance of ρ0 and ρc reveals the curvature of the Universe:

ρ0 > ρc ⇒ K > 0 ρ0 = ρc ⇒ K = 0 ρ0 < ρc ⇒ K < 0
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1.0.2 Conservation of Energy

Using dU = −PdV (or else writing ∇µT
µν = 0 gives:

d

dt

(
ρc2R3

)
= −P

d

dt

(
R3
)

⇒ d

dR

(
ρR3

)
= −3

P

c2
R2 or ρ̇+ 3H

(
ρ+

P

c2

)
= 0

The evolution ρ(R) thus depends on the equation of state P = wρc2. Note that the speed
of sound cs =

√
| dP/dρ | =

√
|w|c requires |w| ≤ 1. Letting ρ ∝ Rα, the above gives

3 + α = −3w ⇒ α = −3(w + 1) ⇒ ρ ∝ R−3(w+1). For regular matter (dust) w = 0 and so
ρm ∝ R−3; relativistic matter and light (radiation) has w = 1/3 so ργ ∝ R−4.

1.1 Cosmological Redshift

Consider two comoving observers, i.e. with a constant χAB between them but a changing true,
physical distance R(t)χAB. Consider two wavecrests of a photon emitted from one observer (at
χ = 0) to the other (χ = χAB) at times te and te + 1/νe. Photons travel along null paths, so

c2 dt2 = R2 dχ2 ⇒ dt

R(t)
=

1

c
dχ

If the photons are received at t0 and t0 + 1/νr then we have both∫ t0

te

dt

R(t)
=

1

c

∫ χAB

0

dχ,

∫ t0+1/νr

te+1/νe

dt

R(t)
=

1

c

∫ χAB

0

dχ =

∫ t0

te

dt

R(t)

⇒
∫ te+1/νe

te

dt

R(t)
=

∫ t0+1/νr

t0

dt

R(t)
⇒ 1

νeR(te)
≈ 1

νrR0

⇒ 1 + z ≡ λr

λe

=
νe
νr

=
R0

R(te)

So when we look at a distant galaxy with redshift z, we can deduce the R(te) from when that
photon was emitted at te, compared to the current R0 (whose value is irrelevant). This also
explains why the energy density of radiation decreases as R−4 – the number density decreases
by R−3 (as with dust), but also the photon energy hν ∝ R−1.

Using ρ ∝ R−3 (w ≈ 0 since t ∼ 50kyr) and R = R0(1 + z)−1, F2 becomes

Ṙ

R
= H0

√
ρ

3H2
0/8πG

− K

H2
0R

2
+

Λ

3H2
0

= H0

√
Ωm

(
R0

R

)3

+ ΩK

(
R0

R

)2

+ ΩΛ

⇒ dt =
dR

RH0

√
Ωm

(
R0

R

)3
+ ΩK

(
R0

R

)2
+ ΩΛ

= − dz

H0(1 + z)
√
Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ

= − dz

H0(1 + z)E(z)
where E(z) ≡

√
Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ

1.2 Cosmic Microwave Background

The total energy density of the photons produced by a black body is given by

ργc
2 =

∫ ∞

0

dν
8πh

c3
ν3

ehν/kBT γ − 1
= aT 4

γ
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and thus ργ ∝ T 4
γ. Now ργ ∝ R−4, so T γ ∝ R−1 ∝ ν.

At early times and small R, T γ was high and everything was ionised; photons were con-
stantly scattering off the free electrons and hence in thermal equilibrium with them. Eventually
the photons became cool enough to allow hydrogen atoms to stay bound without ionising them
again immediately. This lowered the number of free electrons and eventually the scattering
rate slowed to a rate comparable with H, making photons effectively free. This “freeze-out”
occurred at z ∼ 1100: the “last scattering surface” of the Universe. Having been in ther-
mal equilibrium prior to this, the Universe was very well-approximated by a black body, and
because T γ ∝ ν, as the Universe cooled each photon cooled in proportion, preserving the black-
body spectrum. Today this spectrum peaks in the microwave and T γ,0 = 2.726K. The CMB is
isotropic, but as we are not fundamental observers there is a dipole of about 0.003K.

1.3 Age

From the result at the end of §1.1, we can write

dt = − dz

H0(1 + z)E(z)
⇒ t(z) = − 1

H0

∫ z

∞

dz′

(1 + z′)E(z′)

For K = 0, the (surprisingly satisfying) integral can be evaluated:

t(z) =
2

3H0

√
1− Ωm

sinh−1

(√
1− Ωm

Ωm(1 + z)3

)
For a redshift z = 0 (i.e. here and now) and Ωm = 0.31, we find t0 = 13.84Gyr.

1.4 Distances

As photons’ worldlines are null, c dt = R dχ. For light emitted at some t and arriving now (t0),

χ = c

∫ t0

t

dt′

R(t′)
=

c

H0

∫ R0

R(t)

dR

R2E(z)
=

c

H0R0

∫ z

0

dz′

E(z′)

where we used Ṙ = H0E(z)R to convert from t to R, and then R = R0

1+z
to convert from R to

z; these are both common conversions.

1.4.1 Angular Diameter Distance DA

Say we put a standard ruler (e.g. a H atom) of length ℓ at a coordinate distance χ away. From
the FRW metric we see that it will appear to subtend an angle θ such that ℓ = RSKθ. If we
define the angular diameter distance DA by how far away an object would have to be in regular
Euclidean space to have an angular size θ, that is, ℓ = DAθ, we have

DA = RSK =
R0SK

1 + z

For the case ΩK = ΩΛ = 0, SK(χ) = χ and E(z) = (1 + z)3/2, which gives

SK =
2c

H0R0

[
1− 1√

1 + z

]
⇒ DA =

2c

H0

1

1 + z

[
1− 1√

1 + z

]
which tends to cz/H0 ≈ v/H0 (the Euclidean distance according to Hubble’s Law) for low z,
peaks at z = 5/4, and then decreases: things further away start to cover larger angles!
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1.4.2 Luminosity Distance

Say we put a standard candle (e.g. a Type Ia SN) of luminosity L at χ away. The photons
from this source will be spread out over an area 4πR2

0S
2
K by the time they reach Earth. As

discussed in §1.1, frequencies are reduced by a factor of 1 + z: not only does this decrease the
energy of each photon (and hence the energy flux) by this factor, it also reduces the rate at
which these photons arrive. As such, the energy flux is in fact L/4πR2

0S
2
K(1+z)2. Defining the

luminosity distance DL by how far away such an object would have to be in regular Euclidean
space to have this flux, that is, L/4πD2

L, we have

DL = R0SK(1 + z) = DA(1 + z)2

1.4.3 Particle Horizon

The particle horizon is the radius of the past light cone: if at t = 0, every point everywhere
emitted a photon towards us, the photon from the point now at a proper distance dph would
have only just reached us; photons from sources further away have not reached us yet, and
hence those sources are not in causal contact with us (yet).

As before, dχ = cdt/R(t), so

χph = c

∫ t0

0

dt′

R(t′)
⇒ dph = R0c

∫ t0

0

dt′

R(t′)

For any simple Universe model, this gives a distance of order dph ∼ ct0.

1.4.4 Event Horizon

The event horizon is the radius of the future light cone at t = ∞: suppose we emit some light
isotropically at t0; it will eventually reach things that are currently located a distance

deh = R0c

∫ ∞

t0

dt′

R(t′)

away. If this converges, this is the radius of the event horizon: the furthest point away that
we will ever be able to affect. Similarly, objects currently further away than this will never be
able to affect us.
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2 Thermal History of the Universe

2.1 Statistical Physics Tools

2.1.1 Distributions and Densities

The phase-space density distribution function f(r,p) is the probability per d3r d3p /h3 of a
particle having a position r and momentum p; the factor of h3 comes from the volume of a
phase space element or something. For homogeneity f(r,p) cannot depend on position, so
f = f(p); for isotropy it cannot depend on the direction so f = f(p). The number density is
1
h3

∫
R3 f(p)d

3p = 4π
h3

∫∞
0

p2f(p) dp.
The fs for bosons and fermions, in terms of energy E = E(p), are respectively:

fB(E) =
1

e(E−µ)/kBT − 1
fF (E) =

1

e(E−µ)/kBT + 1
(BE/FD)

The number density and total energy density for a particular species is hence:

ni =
4πgi
h3

∫ ∞

0

f(E(p))p2 dp ρic
2 =

4πgi
h3

∫ ∞

0

f(E(p))E(p)p2 dp

where gi is the number of the species which can fit in the same d3r d3p (e.g. ge− = 2 as the
electron has two spin states).

Taking the ultrarelativistic limit E = pc ≫ µ, the energy densities are respectively:

Bosons ρic
2 =

4πgi
h3

∫ ∞

0

p3c

epc/kBT i − 1
dp =

4πgic

h3

(
kBT i

c

)4 ∫ ∞

0

u3

eu − 1
du︸ ︷︷ ︸

π4/15

=
gi
2
aT 4

i

Fermions ρjc
2 =

4πgj
h3

∫ ∞

0

p3c

epc/kBT i + 1
dp =

4πgjc

h3

(
kBT j

c

)4 ∫ ∞

0

u3

eu + 1
du︸ ︷︷ ︸

(7/8)π4/15

=
7

8

gj
2
aT 4

j

where we have substituted the value of a.

2.1.2 Effective Statistical Weight

The total energy density of a relativistic soup containing many different kinds of particles
will be the sum of all their ρi contributions. We can define an effective statistical weight geff
by imagining that the mixture of particles consists purely of photons which proportionally
represent the energy contributions of all the species present. That is:

geff
2
aT 4

γ =
∑

Bosons

gi
2
aT 4

i +
7

8

∑
Fermions

gj
2
aT 4

j ⇒ geff =
∑

Bosons

gi

(
T i

T γ

)4

+
7

8

∑
Fermions

gj

(
T j

T γ

)4

where we allow the BE/FD distributions to have different temperature parameters in general,
in case the different components in the soup are not in thermal equilibrium, perhaps after some
interaction process has frozen out. If they are all in thermal equilibrium, we have simply

geff =
∑

Bosons

gi +
7

8

∑
Fermions

gj
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2.1.3 Chemical Potentials

For the reaction A + B ⇌ C + D to be in equilibrium, it is required that µA + µB = µC +
µD. Photons have no chemical potential because their numbers are not conserved. Thus by
considering X + X̄ ⇌ γ we have µX = −µX̄ .

2.2 Particles in the Early Universe

Non-relativistic particles have E ≈ mc2 + p2/2m, and hence the number density is about

ni ≈
4πgi
h3

∫ ∞

0

p2

e(mic2−µi+p2/2mi)/kBT ± 1
dp

If we assume that e(mic
2−µi)/kBT ≫ 1 (justified shortly) then the integral simplifies and the

difference between bosons and fermions disappears:

ni ≈
4πgi
h3

e−(mic
2−µi)/kBT

∫ ∞

0

p2e−p2/2mikBT dp = gie
−(mic

2−µi)/kBT

[
h√

2miπkBT

]−3

where the quantity in the squackets is the thermal de Broglie wavelength, λ. The number of
particles in a cube of side length λ is thus

gie
−(mic

2−µi)/kBT = niλ
3

So the condition that e(mic
2−µi)/kBT ≫ 1 is to impose that the gas is not quantumly dense.

Note that the number density is proportional to e−mic
2/kBT . In the early Universe kBT ≫

2mic
2 for all particles in the Standard Model and hence they are all being produced ultrarel-

ativistically in particle-antiparticle pairs, and hence contribute to the sum for geff. As T cools
off, progressively lighter particles cease to be relativistic and annihilate with their antiparticles,
exponentially suppressing their numbers. Today the only particles which are still relativistic
and can contribute to geff are the massless γ and the almost-massless ν.

2.2.1 kBT ≳ 150MeV

Initially, all particles in the Universe were relativistic and being created and annihilated all the
time: geff = 106.75. At kBT ∼ 150GeV, the electromagnetic and weak forces split (prior to
this is electroweak unification) causing W± and Z0 to drop out and geff to fall to about 80.

2.2.2 1MeV ≲ kBT ≲ 150MeV

As the temperature drops below 150MeV, a “QCD phase transition” occurs, causing quarks and
gluons to drop out, and shortly afterwards the muons drop out. The only particles remaining
are γ, ν and e±. Weak interactions cause ν to be in equilibrium with e±, and electromagnetic
interactions “couple” e± and γ, so everything is at the same temperature. Hence1

geff = 2︸︷︷︸
γ

+
7

8

[ e±︷ ︸︸ ︷
2︸︷︷︸
↑/↓

× 2︸︷︷︸
e+/e−

+

νe/νµ/ντ︷ ︸︸ ︷
3× 2

]
= 2 +

70

8
= 10.75

1Neutrinos are weird. Either they are their own antiparticle and have e.g. gνe
= 2, or they are not their own

antiparticle and gν̄e
= gνe

= 1. Either way, each flavour of neutrino contributes 2.
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2.2.3 kBT ≪ 1MeV and Neutrino Temperature

As T cools below 3MeV, the ν decouple from the e±, but initially remain at the same temper-
ature despite no longer being in equilibrium – they just aren’t interacting with anything; they
are relics of the time when they were interacting with e±. The decoupling occurs because the
rate of weak interactions2 is ΓW = neσW c ∝ T 3T 2 = T 5, whereas the Hubble parameter in the

radiation-dominated era (where ρ ∝ R−4) is H = H0

√
Ωm(R0/R)4 ∝ R−2 ∝ T 2. Thus as the

temperature cools, Γ decreases faster than H, eventually Γ ≪ H and the weak interactions
which were keeping ν and e± in equilibrium cease to occur at a meaningful rate. We say that
neutrinos and electrons have decoupled, and that neutrinos have frozen out.

As the temperature cools below 1MeV, most photons are no longer able to do e± pair
production, so the equilibrium fails and e± annihilate into γ unopposed. This will raise T γ but
not change T ν because neutrinos are no longer influenced by whatever the γ and e± are doing.
To deduce the temperature discrepancy, we need to look at entropy. It can be shown that the
entropy is generally given by

S =
R3

T
(ρ+ P ) ∝ ρ

T
∝ geffT

3R3

where we have used P ∝ ρ. The total entropy of the e± and γ (the ν have stopped interacting
with these) is the same before and after the annihilation. Before, we have an energy density
of 2

2
aT 4

1 = aT 4
1 from the γ, and 7

8
× 4

2
aT 4

1 =
7
4
aT 4

1 from the e±, where T 1 is the temperature of
the γ, e±, and ν before the annihilation. Afterwards, we simply have an energy density of aT 4

2

from the photons alone; the neutrinos don’t know that any of this has happened and are still
at T 1. Setting S ∝ geffT

3 for the electrons and photons equal before and after,(
2 +

7

2

)
T 3

1 = 2T 3
2 ⇒ T 1 =

(
4

11

)1/3

T 2

3
√
4/11 ≈ 0.71, so the cosmic neutrino background is today expected to have T ν ≈ 1.95K; less

than that of the photons which gained a boost from the electron annihilation. Substituting
this into the expression for geff, we have the current value as

geff = 2 +
7

8
× 6×

(
4

11

)4/3

≈ 3.36

2.3 Recombination

Jumping forwards a bit, the formation of atoms occurred when the temperature was at eV
levels, thousands of years after all that other stuff.

When the reaction p++ e− ⇌ H+kγ is in equilibrium, we have µp+µe = µH . The number
densities of the three species are

np = gpe
−(mpc2−µp)/kBTλ−3

p ne = gee
−(mec2−µe)/kBTλ−3

e nH = gHe
−(mHc2−µH)/kBTλ−3

H

And hence the chemical potentials can be cancelled by taking interest in the fraction

nH

npne

=
gH
gpge

e−(mH−mp−me)c2/kBT

(√
mH

mpme

h√
2πkBT

)3

⇒ nH

n2
e

≈
(

h2

2meπkBT

)3/2

eQ/kBT

2The dependence of σW on T is apparently σW ∝ T 2.
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(the Saha equation) where we have used gH = 4, gp = ge = 2, mH ≈ mp, ne = np for neutrality,
and defined Q ≡ (mp +me −mH)c

2 = 13.6eV.
As the temperature falls, this fraction will increase (eQ/kBT beats T−3/2). We are more

interested in the ratio of electrons to baryons, so we define3 the ionisation fraction:

x =
ne

nB

⇒ 1− x ≈ 1− ne

np + nH

=
np + nH − nE

np + nH

≈ nH

nB

⇒ nH

n2
e

≈ 1

nB

1− x

x2

Hence Saha gives: 1− x

x2
= nB

(
h2

2meπkBT

)3/2

eQ/kBT

The number density of baryons is experimentally known to be nB = ηnγ where η ≈ 10−9, and
nγ can be derived as a function of temperature as

nγ =
8π

h3

∫ ∞

0

p2

epc/kBT − 1
dp =

8π

h3

(
kBT

c

)3 ∫ ∞

0

x2

ex − 1
dx︸ ︷︷ ︸

Γ(3)ζ(3)=2ζ(3)

=
16πζ(3)

h3

(
kBT

c

)3

Hence the Saha equation becomes

1− x

x2
=

16πζ(3)

h3

(
kBT

c

)3

η

(
h2

2meπkBT

)3/2

eQ/kBT =

(
16πζ(3)

(2π)3/2

)
︸ ︷︷ ︸

≈3.8

η

(
kBT

mec2

)3/2

eQ/kBT

Figure 1 | Saha Model of Ionisation
Fraction as the Universe
Cools. Note that the frac-
tion only starts to fall from
1 at around T = 7000K.

Thus we have a (quadratic) expression for the ioni-
sation fraction as a function of temperature. Although
Q/kB = 1.6× 105K, we have mec

2/kB = 5.9× 109K, so
although the exponent starts to pick up around 105K,

the small factors η and (105/5.9× 109)
3/2

mean that
the temperature must reduce significantly further than
this for the exponent to outweigh them4.

The relationship between ionisation fraction and
temperature is given in Figure 1. We see that x only be-
gins to deviate from 1 (i.e. atoms only start forming) at
around 7000K; this is because whenever an atom forms
it is reionised almost immediately by one of the many
billions of photons surrounding it.

It turns out that the analysis is more complicated,
as other energy levels besides the ground state get in-
volved. The ionisation fraction actually drops off a
little later at about T = 3800K, which corresponds to
a redshift of about 1100.

2.4 Nucleosynthesis

Primordial nucleosynthesis proceeds in several stages, overlapping with the stages of the previ-
ous sections. We begin by rewinding back to the early Universe when electrons were relativistic.

3Ignoring the contribution of He and other light elements to baryonic matter – in the next section we will
see that there are about 0.08 as many He nuclei as H nuclei at this point

4Of course, the factor kBT
mec2

will also go down, but not as quickly as eQ/kBT goes up
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2.4.1 kBT ≳ 1MeV: Equilibrium

At these temperatures p, n, γ, ν and e± are all kept in thermal equilibrium, by weak interactions
like n+νe ⇌ p++e− and e± pair production. Observations are consistent with µνe = µe− = 0, so
we must have µn = µp. Being very massive particles, protons and neutrons are non-relativistic
at these temperatures; both are spin-1/2 so the ratio of their abundances (in equilibrium) is:

nn

np

= e−(mn−mp)c2/kBT

(
mn

mp

)3/2

≈ e−1.29MeV/kBT

2.4.2 kBT ≈ 0.8MeV: Freeze-out

ΓW ∝ T 5 and H ∝ T 2, so as T decreases eventually the weak interactions failed to maintain
equilibrium between neutrons and protons. This happened when the Universe was about 1s
old and kBT ≈ 0.8MeV, and hence when the neutron-to-proton ratio was

nn

np

= e−1.29/0.8 ≈ 1

5

It is fortunate that the details of the weak force ensure Γ ∼ H at around kBT ∼ (mn −mp)c
2,

as otherwise nn/np would be nowhere near 1 and making atomic nuclei would be difficult.

2.4.3 Deuterium Bottleneck and Helium Formation

Free neutrons decay over time as e−t/880s, so time is running out for nucleosynthesis. Annoy-
ingly, the only thing that can be made out of just proton-neutron collisions is D, which takes a
nail-bitingly slow 300s to appreciably form (this is the “deuterium bottleneck”), for the same
reasons that it took so long for recombination (low baryon-to-photon ratio and high mpc

2/kB).
The neutron-to-proton ratio in the nuclei that form to rescue the neutrons from impending
decay is then

nn

np

=
1

5
e−300/880 ≈ 0.14

Those are the neutrons which go into forming D, which is stable, so is no longer under time
pressure and can casually form He. The number density nD before forming He is the same as
that of neutrons nn, but after two Ds make a He we have nHe = nn/2. The number of hydrogen
nuclei is the original number of protons minus the number that pair up with neutrons to make
D, so nH = np − nn. We therefore have

nHe

nH

=
nn/2

np − nn

=
0.07

1− 0.14
= 0.08

This is the number ratio of He to H. But He is more massive than H, so the mass ratio will be:

Y =
4nHe

nH + 4nHe

=
0.32

1.32
≈ 0.25

which is pretty accurate, and far more than stellar nucleosynthesis could have achieved by now.

2.5 Timings

This has all been in no particular order, so we should get a handle on some timings.
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2.5.1 Matter-Radiation Equality

Today, surveys suggest Ωm ≈ 0.31, mostly dark matter, whereas Ωr:

Ωr =
ργc

2/c2

3H2
0/8πG

=
8πGaT 4

γ,0

3c2H2
0

≈ 5× 10−5

which is orders of magnitude lower. However, radiation density is proportional to R−4, whereas
matter density is proportional to R−3, so there was once a time when the two were equal:

Ωm

(
R0

R

)3

= Ωr

(
R0

R

)4

⇒ R0

R
= 1 + zmr =

Ωm

Ωr

≈ 6100

which is way off the true value of 3400 because we have forgotten to include the neutrinos,
which bump Ωr up to more like 9 × 10−5. It is important to pin this redshift down because
R(t) evolves differently depending on whether the energy density is dominated by matter or
radiation.

2.5.2 Evolution and Composition

Neglecting curvature and the cosmological constant, F2 becomes(
Ṙ

R

)2

=
8πG

3
ρ ⇒ Ṙ ∝ Rρ1/2

Depending on the proportionality between ρ and R, this differential equation has different
solutions. Since matter-radiation equality, matter has been dominant and ρ ∝ R−3; hence

Ṙ ∝ R−1/2 ⇒ R(t) ∝ t2/3 ⇒ 1 + z ∝ t−2/3

We can use this to calculate the time of matter-radiation equality, as since then the Universe
has been matter-dominated and we know what the redshift was then. We have

1 + zmr =

(
tmr

t0

)−2/3

⇒ tmr = (3400)−3/2t0 ≈ 70, 000 years

a more accurate calculation gives 50,000 years but oh well.
Before matter-radiation equality, radiation was dominant and so ρ ∝ R−4; hence

Ṙ ∝ R−1 ⇒ R(t) ∝ t1/2 ⇒ 1 + z ∝ t−1/2

During this period the temperature is also a measure of the time: T ∝ R−1 ∝ t−1/2 ∝ 1 + z.
Subtly though, because the entropy geffT

3R3 is conserved, the proportionality constants change
whenever geff does.

2.5.3 Everything Else

Everything else is a bit harder to calculate timings for, but the main events of the hot early
Universe are summarised in Figure 2 overleaf.
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Figure 2 | Timeline of events in the hot early Universe.

3 Dark Matter

3.1 Ways of Measuring Mass

• Virial Theorem. In virialised systems, ⟨K⟩ = −1
2
⟨U⟩ ⇒ 1

2
v2 = GMr/2r. By measuring

velocity dispersions (v) and the distances to the centre of the relevant system (galaxy,
galaxy cluster, ...) one can estimate the mass enclosed at a given radius.

• X-Ray Measurements. For a system in hydrostatic equilibrium, its gas satisfies
dP/dr = −GM(r)ρ/r2 and P = nkBT = ρkBT/µmH . X-ray spectra determine T (r)
and n(r), so substituting and solving for M(r) gives5

M(r) = − kBTr

GµmH

(
d lnT

d ln r
+

d lnn

d ln r

)
• Galaxy Luminosity Function. Surveys give this as a Schechter function:

ϕ(L) dL =
ϕ∗

L∗

(
L

L∗

)α

e−L/L∗
dL (α ≈ −1)

Integrating6, we obtain the total luminosity per unit volume. Suppose the Universe
has the critical density ρc: this would give an average mass-to-luminosity ratio for the
Universe. It is found to be 103 larger than that of stars.

5TPoC is missing lns in the derivatives and hence is dimensionally incorrect.
6The integral doesn’t seem to converge for α = −1 but oh well
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• Gravitational Lensing. GR says that a point mass M deflects a light ray at a large
impact parameter b by an angle

α =
4GM

bc2

By considering the source plane in Figure 3, we require that αDLS+θSDS = θDS (angular
diameter distances). Substituting α from above and b = θDL, we obtain

θ(θ − θS) =
4GM

c2
DLS

DLDS

≡ θ2E

– a quadratic in θ. The product of the two solutions |θ+θ−| = θ2E. if the source is directly
behind the lens (θS = 0), then we have θ = ±θE; in 2D this will appear as a ring around
the lensing mass. Lensing also achromatically magnifies sources, giving a characteristic
light curve as a lens passes in front of a source.

Figure 3 | Diagram of Gravitational Lens. The distances shown are angular diameter distances.

3.2 Dark Matter Candidates

• Massive astrophysical compact halo objects (MACHOs). These may consist of
Jupiter-sized objects, or primordial black holes (those with M ≳ 3M⊙ would not yet have
decayed). However, microlensing surveys show that if MACHOs are between 10−7M⊙
and 10M⊙, they cannot contribute very much to the Milky Way’s halo mass. Also, no
gravitational wave signals from substellar black hole mergers have ever been detected.

• Neutrinos. These are neutral and don’t interact much with light, so were compelling
candidates. Calculating the fermion integrals for neutrinos and comparing to photons,

ρν =
3

11
mνnγ ⇒ Ων ∼ 10−3

where we have used T ν = (4/11)1/3T γ. This is still nowhere near enough to account for
dark matter (and also is weirdly similar to the mass contribution of stars).
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4 Dark Energy and Inflation

4.1 Cosmological Constant

Using F2, we can think of Λ as being due to a fluid with density ρΛ = Λc2/8πG. However, Λ
(and so ρΛ) is a constant according to EFE. Using conservation, ρ ∝ R−3(w+1), so for ρΛ to be
constant we require its density to have wΛ = −1. Very weird fluid.

According to F1, ρ and P cause the Universe’s expansion to decelerate, and Λ causes it
to accelerate; at late times, ρ and P will dilute away and Λ will cause late-time acceleration.
Alternatively, some obscure fluid with w < −1/3 would also make the first term positive and
help the Universe accelerate.

A suggestion was that Λ might originate from the QFT vacuum energy: each mode of the
electromagnetic field has a ground state energy ℏω/2 = ℏck/2. Integrating over all wavevectors
up to 1/ℓP , we would have a vacuum energy of order ℏcℓ−4

P ∼ 10113Jm−3. However, according
to measurements, ρΛc

2 = Λc4/8πG ∼ 10−9Jm−3, wrong by of order 102 orders of magnitude!

4.2 Problems with the Early Universe

4.2.1 Horizon Problem

From §1.4.3, the particle horizon at a time t is R(t)c
∫ t

0
dt′ /R(t′). Now if a single fluid with some

w ≥ 0 is dominant in the Universe, ρ ∝ R−3(w+1), for which F2 yields Ṙ ∝ R−(3w+1)/2 ⇒ R ∝ tα

with α = 2/(3(w + 1)). For such a Universe, dph = ct/(1− α).
Now consider the almost totally uniform CMB. By setting dph,rec = DA,recθrec and calculating

dph and DA at recombination (z ≈ 1100), we find that θrec ≈ 1100−1/2 = 1.7°(about 3.5 full
Moons), so any correlations in the CMB over larger scales than this would be between regions
not in causal contact. Yet the CMB is almost uniform across the sky, suggesting the whole
thing was in thermal equilibrium. The Universe therefore cannot have had R ∝ tα as would
be caused by a conventional fluid.

4.2.2 Flatness Problem

It turns out that K = 0 is an unstable equilibrium – if there were any curvature in the early
Universe it would have become more important over time, as the curvature term goes as R−2,
rather than matter (R−3) or radiation (R−4). We know today that |ΩK | < 0.01, so the Universe
is probably just flat, but if not then some very fine tuning would have been required.

4.3 Inflaton Field ϕ

As mentioned, some fluid with w < −1/3 could also cause inflation. This is presented as a

scalar “inflaton” field ϕ(x, t), whose kinetic energy is 1
2
ϕ̇
2
and potential energy is some V (ϕ).

If the inflaton fluid is isotropic (ϕ = ϕ(t)), it turns out that

ρϕc
2 =

1

2
ϕ̇
2
+ V (ϕ) P ϕ =

1

2
ϕ̇
2 − V (ϕ)

so depending on the exact functions ϕ(t) and V (ϕ), the equation of state parameter wϕ ≡
P ϕ/ρϕc

2 may (unlike Λ) change over time7. Furthermore, it turns out that the Euler-Lagrange

7in these theories, ϕ is called quintessence; this is not considered further
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equations in GR give:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0

It helps intuition to think of the above as equivalent to the equation of motion for a particle
moving in a potential V (ϕ), with a drag term proportional to H (known as Hubble friction).
In general, this equation must be solved together with F2, which in this case is

H2 =
8πG

3c2

[
1

2
ϕ̇
2
+ V (ϕ)

]
If the inflaton field changes only slowly, so that ϕ̇

2 ≪ V (ϕ) (known as the slow-roll condi-
tion), then ρϕc

2 ≈ V (ϕ), and because ϕ̇ is small V (ϕ) barely changes, so ρϕ is roughly constant8.
Substituting ρϕ ≈ V (ϕ)/c2 into F1 or F2 (with Λ = K = 0) gives

R(t) ∝ eHt where H =

√
8πG

3c2
V (ϕ)

This exponential dependence does not have the same problems as the power-law R that a fluid
has. If this exponential phase (or, if you will, inflation) lasts long enough that R increases by a
factor of over about e60 (i.e. 60 “e-foldings”) then the horizon and flatness problems disappear.

Inflation due to a scalar field can be made temporary. The equation of motion for ϕ shows
that if V (ϕ) begins high on a slope, it will accelerate down said slope, increasing |ϕ̇|. As V (ϕ)
approaches a minimum, the Hubble friction will slow it down, dissipating energy away from the
scalar field into the creation of other components (like ordinary matter and radiation) which
take over proceedings as ϕ fades away. This process is called reheating.

5 Fluctuations

5.1 Newtonian Approach

Writing the equations of fluid dynamics, including Newtonian gravity,

∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ v · ∇v = −∇ϕ− 1

ρ
∇P ∇2ϕ = 4πGρ

where v = d(R(t)x)/dt (i.e. v is the physical velocity and u ≡ dx/dt is the comoving velocity).
Transforming to comoving coordinates, writing ρ = ρ̄(1 + δ(x, t)), Fourier transforming, and
solving we obtain,

δ̈k + 2Hδ̇k − c2s

(
k2
J − k2

R2

)
δk = 0

where c2s ≡ ∂P/∂ρ and kJ =
√
4πGρ̄/cs. There is again a Hubble friction term.

8Note that the slow-roll condition also gives Pϕ ≈ −V (ϕ) ≈ ρϕ, so w ≈ −1. Together with a constant ρ,
this mimics a cosmological constant Λϕ = 8πGρϕ/c

2 = 8πGV (ϕ)/c4.
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5.1.1 Large-Scale Perturbations

If the perturbations take place on a large scale, then the k2/R2 term will be negligible; this term
is descended from the ∇P term in the fluid equations so such perturbations are interpreted as
those of a pressureless fluid. We then have δ̈k + 2Hδ̇k − 4πGρ̄δk = 0. This will have different
solutions depending on the Universe model used, as the forms of H and ρ̄ will depend on the
Ωi. It is usually found that there is a growing mode and a decaying mode.

5.1.2 Small-Scale Perturbations

Smaller perturbations have k2/R2 ≫ k2
J , so we can then neglect the kJ term, equivalent to

switching gravity off (setting G = 0). For very high-frequency perturbations we can also neglect
H, so we get simply δ̈k = −(csk/R)2δk and hence δk ∝ exp(icskt/R).

5.2 Non-linear Fluctuations

5.2.1 Spherical Collapse Model

Consider a sphere of radius r(t), somewhere within which is a spherically symmetric mass M .
Then r(t) will evolve according to

d2r

dt2
= −GM

r2

The solutions to this equation can be written parametrically (in the development angle θ) as:

r(θ) = A(1− cos θ) t(θ) = B(θ − sin θ) A3 = GMB2

We see that t is a monotonically increasing function of θ, and hence that r will increase from
0 up to 2A and then fall back to 09. Expanding t(θ), inverting and substituting into r(θ),

r(θ) =

(
9GMt2

2

)1/3
[
1− 1

20

(
6t

B

)2/3

+ . . .

]
The density of the perturbation can then be written at early times as:

ρp(t) ≡
M

4
3
πr3

=
1

6πGt2

[
1 +

3

20

(
6t

B

)2/3

+ . . .

]
Now for the model with ΩK = ΩΛ = 0 and Ωm = 1, solving F2 gives

R(t) = (6πGρ̄0)
1/3R0t

2/3 ⇒ ρ̄(t) =
1

6πGt2

The circular mass described above can be thought of as a perturbation to this background
overall density. The relative perturbation δ ≡ ρp/ρ̄− 1 is then given at small times by:

δ =
3

20

(
6t

B

)2/3

In fact, if we used the linear theory in this Universe model, we would have also found a growing
mode δ ∝ t2/3.

9This is what happens in a closed Universe; in an open Universe the solutions become hyperbolic.
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Returning to the non-linear solution with sines and cosines, we see that r reaches a maximum
at r = 2A at θ = π and t = Bπ. At this time, we have

ρp =
3M

32πA3
, ρ̄ =

1

6π3GB2
⇒ δ =

ρp
ρ̄

− 1 =
9π2

16
− 1 ≈ 4.55

whereas linear theory would at this point have given this ratio as 3
20
(6π)2/3 ≈ 1.06, so the

non-linear theory shows that perturbations can get much denser when they stop being linear.

5.2.2 Formation of Virialised Dark Matter Halos

At θ = 2π, r(θ) → 0, which would suggest that ρp → ∞. In fact the spherical collapse model
becomes unrealistic here, and what actually happens is the perturbation settles into a virialised
system, interpreted as a dark matter halo which will go on to host a galaxy. Being in virial
equilibrium, we have T = −1

2
W , and conservation of energy demands that T + W = Wm,

where Wm denotes the potential when r(θ) is at a maximum (being stationary at that time,
Tm ≪ Wm). Hence we find that W = 2Wm. But Wm ∝ r−1; for a spherical system we have
W = −3GM2/5r. Hence rather than collapsing to r = 0, the system stabilises at r = 1

2
rm. The

density of the perturbation at t = 2tm = 2Bπ is thus 8× the density at maximum expansion.
Finally, using the time dependence of the background density ρ̄, we find

ρp
∣∣
t=2Bπ

ρ̄
∣∣
t=2Bπ

=
8 ρp

∣∣
t=Bπ

1
4
ρ̄
∣∣
t=Bπ

= 32

(
9π2

16

)
= 18π2 ⇒ δ = 18π2 − 1 ≈ 177

This is the final density contrast for a virialised dark matter halo. More advanced models
involving Λ give about 200; this is backed up by simulations. If we just used the linear theory
up to t = 2Bπ, we would obtain just δ ≈ 1.69, so if we work within linear perturbation theory
and δ reaches 1.69 then that should be interpreted as a collapse to virial equilibrium.

5.3 Correlation Function

By definition of ρ̄, we must have ⟨δ(x)⟩ = 0. The first non-trivial statistic we might look for
would be the (two-point) correlation function, written

ξ(|x− x′|) = ⟨δ(x)δ(x′)⟩

where due to isotropy ξ can only depend on the distance between two points, not their relative
orientation. We can therefore rewrite this as ξ(r) = ⟨δ(x)δ(x+ r)⟩.

We now wish to convert this to Fourier space, using the convention

δ(x) =
V

(2π)3

∫
d3k δke

ik·x =
V

(2π)3

∫
d3k δ∗ke

−ik·x

where we have used the fact that δ(x) ∈ R by its definition, so taking the complex conjugate
does nothing. This fact makes it easier to the correlation function to k-space:

ξ(r) =
1

V

∫
d3x

V

(2π)3

∫
d3k δke

ik·x V

(2π)3

∫
d3k′ δ∗k′e−ik′·(x+r)

=
V

(2π)6

∫
d3k

∫
d3k′ δkδ

∗
k′e−ik′·r

∫
d3x ei(k−k′)·x︸ ︷︷ ︸
(2π)3δ(k−k′)

=
V

(2π)3

∫
d3k |δk|2e−ik·r
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We see that ξ(r) is the Fourier transform of the power spectrum P (k) = |δk|2. If P (k) ∝ kns

in some model, then ns is the spectral index.

5.4 Anisotropies in the CMB

Fluctuations occurring before recombination imprint anisotropies δT (θ, ϕ) on the CMB. As we
observe them on the inside of a sphere, they should be expanded as a spherical harmonic series:

δT

T
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ)

We can get an idea of the angular scales which are most prominent in the CMB anisotropies
by considering the CMB power spectrum. ℓ is the most important parameter for the angular
scales, which are about 180°/ℓ; m is mostly about orientation. The CMB power spectrum is:

Cℓ ≡
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2

It is conventional to show the CMB spectrum as a plot of ℓ(ℓ + 1)Cℓ/2π against ℓ, because
apparently if P (k) ∝ k (that is, a spectral index of ns = 1), then Cℓ ∝ [ℓ(ℓ+ 1)]−1. As the
spectrum (Figure 4) shows, it is more complicated than this.

Figure 4 | Power Spectrum of the CMB. The red data points were measured by Planck ; the
green line is the cosmological model which best fits the data. Looks pretty good.

5.4.1 Features of the CMB Spectrum

• ℓ ≲ 30, the Sachs-Wolfe Plateau. These fluctuations are a result of random overden-
sities of size λ at the time of recombination, which would require photons to climb out of
potential wells and thus be redshifted and appear colder. It turns out that if P (k) ∝ kns ,
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then ∆T/T ∝ λ(1−ns)/2, so a spectral index of ns = 1 would mean that ∆T/T is scale-
invariant, and hence fluctuations of any (angular) size are equally likely. This plateau
is quite flat so this is almost the case, but in fact the spectral index is slightly “tilted
redward” to ns ≈ 0.97.

• ℓ ≈ 200, First Acoustic Peak. Before recombination, photons and baryons were
constantly interacting (“strongly coupled”) by Thomson scattering and Coulomb inter-
actions, and as such behave essentially as a single fluid. This radiation component of the
fluid has a sound speed given by c2s = dP/dρ = c2/3, so sound waves in this fluid (known
as baryon acoustic oscillations) can travel at a maximum speed10 of c/

√
3. Now recall

from §4.2.1 that the angular scale of the particle horizon at recombination is about 1.7°.
The particle horizon involved seeing how far light could travel since the Big Bang; the
baryon acoustic oscillations can only travel 1/

√
3 as fast and hence would cover a size

of only 1.7°/
√
3 ≈ 1°. It is no coincidence that this is where the first peak in the CMB

power spectrum is. This calculation was sensitive to the curvature of the Universe, and
the result is consistent with K = 0 to a high degree of accuracy.

Further acoustic peaks correspond to sound waves that have integer numbers of oscilla-
tions within the sound horizon. Their relative amplitudes apparently give information
about the amounts of baryons and dark matter.

• ℓ ≳ 1000, Silk Damping. If the coupling between photons and baryons were perfect,
the photon mean free path would be 0 and the two would form a perfect fluid. However
the coupling was not perfect (even before recombination) so the mean free path would
be finite, though not infinite. As such, temperature inhomogeneities get smoothed out,
more so on smaller scales. Temperature fluctuations therefore show a damping tail.

10When doing this properly, the baryons do get involved and their inertia reduces the sound speed a bit; this
analysis is an approximation to get the idea across.
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