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1 Fundamentals

A fluid is a medium with well-defined macroscopic properties (T , ρ etc.). A fluid element is a
region of size ℓ with a large number of particles and all macroscopic variables roughly constant:

n−1/3 ≪ ℓ ≪ q

|∇q|

where n is the fluid’s number density and q is any macroscopic variable.
Collisional fluids have a mean free path ≪ ℓ, and hence bumble to equilibrium very quickly.

Collisionless fluids have mean free paths ≳ ℓ, so particles travel long distances and macroscopic
properties depend on initial conditions.

The Eulerian description of a fluid assigns a field q(r, t) to every point in the fluid, relative
to a fixed reference frame. The Lagrangian description instead looks at properties of each fluid
element; because these move in space as well as time, we can define a Lagrangian derivative:

Dq

Dt
= lim

δt→0

q(r+ δr, t+ δt)− q(r, t)

δt
= lim

δt ∂q/∂t + δr · ∇q

δt
=

∂q

∂t
+ u · ∇q

There are three ways of lining a fluid, which all coincide if ∂u/∂t = 0:

• Streamlines: Curves whose tangents are velocity fields u(r, t). If u is known, then
dy/dx = ẏ/ẋ is solved by the streamlines

• Streaklines: a streakline of r0 is the locus of points that once passed through r0

• Particle paths: the paths taken by individual fluid elements over time

1.1 Conservation of mass

Consider an arbitrary fixed Eulerian volume V and its bounding surface ∂V . By conservation
of mass and arbitrarity of V ,

∂

∂t

∫
V

ρ dV = −
∫
∂V

ρu · dS ⇒
∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0 ⇒ ∂ρ

∂t
+∇ · (ρu) = 0

(M)
This can also be expressed in the Lagrangian form as Dρ

Dt
+ρ∇·u = 0, so incompressible fluids,

which by definition have Dρ
Dt

= 0, are also divergenceless ∇ · u = 0.
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1.2 Conservation of Momentum

Consider the force on an arbitrary Lagrangian volume V in an arbitrary direction n̂:

F · n̂ = −
∫
∂V

pn̂ · dS+

∫
V

ρg · n̂ dV = n̂ ·
∫
V

[−∇p+ ρg] dV

This will be equal to the Lagrangian rate of change of momentum in this direction:

n̂ · D

Dt

∫
V

ρu dV = n̂ ·
∫
V

[−∇p+ ρg] dV ⇒ D

Dt

∫
V

ρu dV =

∫
V

[−∇p+ ρg] dV

because n̂ was arbitrary. Now we cannot take the derivative inside the integral as before, as it
is Lagrangian and the volume may be changing. We therefore take the limit as V → δV :

[−∇p+ ρg]δV =
D(ρuδV )

Dt
= u

D(ρδV )

Dt︸ ︷︷ ︸
0

+ρδV
Du

Dt

⇒ ρ
Du

Dt
= ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg (p)

Working our way back to Eulerian form:

ρ∂tui + ρuj∂jui = −∂ip+ ρgi

∂t(ρui) = −ρuj∂jui + ui∂tρ− ∂j(pδij) + ρgi = −ρuj∂jui − ui∂j(ρuj)− ∂j(pδij) + ρgi

= −∂j
(
ρuiuj︸ ︷︷ ︸
Ram

+ pδij︸︷︷︸
Thermal

)
+ ρgi ≡ −∂jσij + ρgi

The first term in the stress tensor, of the form ρu⊗u, arises from bulk motion that affects the
flow; pδij is just due to isotropic thermal pressure from microscopic motions.

1.3 Gravitation

The gravitational potential (Φ, no matter what the notes say) is given by g = −∇Φ. The
potential around a point mass is Φ = −GM/r; for a system of point masses:

Φ = −
∑
i

GMi

|r− ri|
⇒ g = −∇Φ = −

∑
i

GMi(r− ri)

|r− ri|3
→ −G

∫
ρ(r′)

r− r′

|r− r′|3
dV ′

⇒ ∇ · g = −∇2Φ = −G

∫
ρ(r′)4πδ(r− r′) dV ′ = −4πGρ ⇒ ∇2Φ = 4πGρ

(P)

⇒
∫
V

∇ · g dV ′ = −4πG

∫
V

ρ dV ⇒
∫
∂V

g · dS = −4πGMV

which can be useful if the situation has a nice symmetry. For a spherical distribution radius r,

−4πr2|g| = −4πG

∫ r

0

4πr′2ρ(r′) dr′ ⇒ |g| = dΦ

dr
=

G

r2

∫ r

0

4πr′2ρ(r′) dr′
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⇒ Φ(r) =

∫ r

∞

G

s2

(∫ s

0

4πr′2ρ(r′) dr′
)
ds = −GMr

r
+ 4πG

∫ r

∞
sρ(s) ds

The gravitational potential energy of a pair of point masses is −GM1M2/|r1 − r2|. For a
system of point masses, the total gravitational potential energy is

Ω = −1

2

∑
i

∑
j ̸=i

GMiMj

|ri − rj|
=

1

2

∑
j

MjΦ(rj) →
1

2

∫
ρ(r)Φ(r) dV

Consider the quantity1 I =
∑

i mir
2
i . Half its second derivative is

1

2
Ï =

∑
i

mi
d

dt
(ri · ṙi) =

∑
i

miri · r̈i +
∑
i

miṙ
2
i =

∑
i

∑
j ̸=i

ri · Fij + 2T

=
∑
i

∑
j<i

(ri − rj) · Fij + 2T = Ω+ 2T

In a steady-state (AKA relaxed or virialised) system, İ = 0, so Ω + 2T = 0 (V).

1.4 Energy

∂ρ

∂t
+∇ · (ρu) = 0 ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p− ρ∇Φ ∇2Φ = 4πGρ

In order to close this system of equations in ρ,u, p and Φ, we need another equation relating
p to the other three. This is fulfilled by the equation of state of the fluid, which relates p to ρ;
because astrophysical fluids are quite dilute, this is just the ideal gas law:

p =
ρkBT

µmH

=
R∗

µ
ρT where R∗ =

kB
mH

= 8314 Jkg−1K−1

where µ is the average particle mass – including the electrons; neutral hydrogen has µ = 1;
ionised hydrogen has µ = 0.5. Unfortunately, a new variable, T has been introduced.

1.4.1 Barotropic Fluids p = p(ρ)

There are three examples of barotropic fluids, whose EoSs close the three equations above.
Isothermal. In an isothermal fluid, strong heating and cooling processes quickly flatten

out any temperature inhomogeneities and T is constant throughout the fluid. Thus p ∝ ρ.
Electron-degenerate. In electron-degenerate fluids such as those in white dwarves, quan-

tum effects lead to p ∝ ρ5/3, or p ∝ ρ4/3 if the electrons become relativistic.
Adiabatic. Adiabatic gases move with no change in entropy or transfer of heat. Their

barotropic relation is harder to derive. Per unit mass of fluid, 1LT with δQ = 0 gives

0 = de+ pM dV pM =
kBT

V µmH

as ρM =
1

V

de

dT
= CV,M ≡ f

kB
2µmH

1This is a bit like the system’s moment of inertia, but the ri in the formula for moment of inertia are the
distances to a particular axis; in the quantity I here we are looking at the distances to some origin.

3



where e is the internal energy per unit mass (dependent only on temperature) and CV,M is the
constant volume heat capacity per mass, dependent on f , the number of degrees of freedom
(just 3 for a monatomic, up to 7 for a diatomic). We can also write:

e = CV,MT = f
kB

2µmH

T =
f

2

p

ρ
=

1

γ − 1

p

ρ
⇒ e =

1

γ − 1

p

ρ

in accordance with equipartition. Substituting into 1LT,

0 = f
kB

2µmH

dT+
kBT

V µmH

dV ⇒ 0 =
f

2

dT

T
+
dV

V
⇒ V ∝ T−f/2 ∝ (pV )−f/2 ⇒ p ∝ V − f+2

f ∝ ρ
f+2
f

The exponent f+2
f

is equal to γ, the specific heat ratio, so for an adiabatic fluid p ∝ ργ:

δQ = CV,M dT + d(pMV )− V dp =

(
CV,M +

kB
µmH

)
dT − V dp

⇒ Cp,M = CV,M +
kB

µmH

= CV,M

(
1 +

2

f

)
= CV,M

f + 2

f
⇒ γ ≡ Cp

CV

=
f + 2

f

1.4.2 General Fluids

Generally, p ̸= p(ρ). For a fluid element, per unit mass;

De

Dt
=

δW

δt
+

δQ

δt
where

δW

δt
= −p

D(1/ρ)

Dt
=

p

ρ2
Dρ

Dt
and

δQ

δt
= −Q̇cool

⇒ De

Dt
=

p

ρ2
Dρ

Dt
− Q̇cool = −p

ρ
∇ · u− Q̇cool

Now e is only the internal energy per unit mass; the fluid element is generally also moving and
in a potential. The total energy per unit volume in a time-independent potential is:

E = ρ

(
e+

1

2
u2 + Φ

)
⇒ DE

Dt
=

M︷︸︸︷
Dρ

Dt

E

ρ
+ ρ

( above︷︸︸︷
De

Dt
+u ·

p︷︸︸︷
Du

Dt
+
DΦ

Dt

)

⇒ ∂E

∂t
+∇ · [(E + p)u] = −ρQ̇cool (E)

If there are no cooling processes, we have a simple Eulerian equation relating the energy change
to the enthalpy (E + p) flux. If Q̇cool = 0, then E relates ρ, p,u,Φ, hence closing M, p,P and
we have a fully determined set of equations.

However, Q̇cool ̸= 0 generally. Here are some possibilities:

• Radiative Cooling. Light is radiated away by the fluid. This may occur from re-
combination, collisional excitation, and electron Bremsstrahlung, each of which involve
two-body interactions and so the overall rate of cooling is ∝ ρ2; thus the rate of cooling
per unit mass, Q̇cool ∝ ρ. Thus Q̇cool,rad = ρf(T ).

• Cosmic Ray Heating. External relativistic particles enter the fluid and create a cascade
of particles as it blitzes through, heating the fluid. The heating rate is simply proportional
to the density, so Q̇cool,CR ∝ ρ0 = −H; negative because this heats the fluid.

Combining these two, Q̇cool = ρf(T )−H. Energy can move through a fluid by various transport
processes. These include thermal conduction (flux proportional to −∇T ), radiative transport
(flux in optically thick media proportional to −∇Erad) and convection.
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2 Hydrostatic Equilibrium

Hydrostatic equilibrium is defined by u = 0, ∂/∂t = 0. Hence M is satisfied and p becomes:

∇p = ρg = −ρ∇Φ

If the fluid is barotropic (p = p(ρ)) then this relates ρ and Φ. In some fluids Φ will be externally
imposed (e.g. the atmosphere in the Earth’s gravitational field). In others, the fluid will be
self-gravitating, and ∇2Φ = 4πGρ, a second equation for ρ and Φ.

2.1 Polytropic Stars

Stars are spherically symmetric, self-gravitating, and can be approximated as in hydrostatic
equilibrium and barotropic. Stars whose barotropic relation is a monomial of order > 1 are
polytropic, and can be written p = Kρ1+1/n. The equation for hydrostatic equilibrium is then:

dΦ

dr
= −1

ρ

d

dr

(
Kρ1+1/n

)
= −(n+ 1)K

[
1

n+ 1

(
ρ

n+1
n

)( 1
n+1

−1) d

dr

(
ρ

n+1
n

)]
= −(n+ 1)K

d

dr

[(
ρ

n+1
n

) 1
n+1

]
= −(n+ 1)K

d

dr

(
ρ1/n

)
⇒ Φ = −(n+ 1)Kρ1/n + const.

At the surface, ρ = 0 and we label Φ = ΦT here. At the core, ρ = ρc and Φ = Φc, so:

ρ =

(
ΦT − Φ

(n+ 1)K

)n

ρc =

(
ΦT − Φc

(n+ 1)K

)n

⇒ ρ = ρc

(
ΦT − Φ

ΦT − Φc

)n

We also have P to relate ρ and Φ; substituting for Φ:

1

r2
d

dr

(
r2
dΦ

dr

)
= 4πGρc

(
ΦT − Φ

ΦT − Φc

)n

Substituting θ below, where θc = 1, θT = 0, and dθ/dr
∣∣
c
∝ gc = 0 at the centre:

θ ≡ ΦT − Φ

ΦT − Φc

⇒ −(ΦT − Φc)
1

r2
d

dr

(
r2
dθ

dr

)
= 4πGρcθ

n

and then rescaling the radial coordinate; we will have θ(ξ = 0) = 1 and dθ/dξ
∣∣
0
= 0

ξ = r

√
4πGρc
ΦT − Φc

⇒ 1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn (Lane-Emden)

Solutions of the Lane-Emden equation are known as polytropes, and are analytic for n = 0, 1, 5.
The first zero of θ(ξ), at ξ0, gives the value of ξ corresponding to the surface of the star.

2.1.1 Scaling

Consider a family of stars with the same polytropic index n (e.g. white dwarfs with p =
Kρ5/3 ⇒ n = 3/2 where K is a bunch of quantum constants). All the stars in this family will
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have the same θ(ξ), but their ξ(r) and θ(Φ) will be rescaled according to Φc, or more physically,
ρc. From the relation above between ρc and Φc, we have

ρc =

(
ΦT − Φc

(n+ 1)K

)n

⇒ ΦT − Φc ∝ Kρ1/nc ⇒ ξ ∝ K−1/2ρ
1
2
(1−1/n)

c r

M =

∫ R

0

4πr2ρ(r) dr ∝ K3/2ρ
− 3

2
(1−1/n)

c

∫ ξ0

0

ξ2ρcθ
ndξ = K3/2ρ

1
2
(3/n−1)

c

∫ ξ0

0

θnξ2dξ ∝ K3/2ρ
1
2
(3/n−1)

c

whereas R ∝ ξ0K
1/2ρ

1
2
(1/n−1)

c ∝ K1/2ρ
1
2
(1/n−1)

c .

Treating K as a constant, we can eliminate ρc between M and R, giving M ∝ R
3/n−1
1/n−1 =

R
3−n
1−n , which for white dwarfs with n = 3/2 gives M ∝ R−3, which works quite well.
However, for MS stars this is not very accurate, even for those with n = 3/2. This is because

most MS stars have different values of K, but due to the universality of nuclear processes they
do have the same T c, enabling the following proportionality:

K = pcρ
−1−1/n
c =

ρckBT c

µmH

ρ−1−1/n
c ∝ ρ−1/n

c

Hence M ∝ ρ
−1/2
c and R ∝ ρ

−1/2
c , hence M ∝ R, which is more accurate.

3 Sound & Shocks

3.1 Sound Waves

We do a first-order perturbation analysis of

∂ρ

∂t
+∇ · (ρu) = 0

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p−∇Φ

Suppose the equilibrium situation is to have ρ(r) = ρ0(r), p(r) = p0(r) and u(r) = 0. Consider
a Lagrangian perturbation about this equilibrium, such that the fluid element currently at
location r has ρ = ρ0(r)+∆ρ(r) and p = p0(r)+∆p(r) and u = ∆u(r). The equations of fluid
dynamics are in terms of Eulerian derivatives, in which picture the disturbances are instead
for example ρ0 + δeρ; the relationships between the Eulerian perturbation and the Lagrangian
perturbations are, to first order,

∆ρ = δeρ+∆r · ∇ρ ≈ δeρ+∆r · ∇ρ0, ∆p = δep+∆r · ∇p0, ∆u = δeu

For a uniform medium ∇ρ0 = ∇p0 = 0 and in that case the distinction between Eulerian and
Lagrangian pictures vanishes to first order.

M becomes in general

0 =
∂

∂t
(ρ0 + δeρ) +∇ · ((ρ0 + δeρ)u)

=
∂

∂t
(ρ0 +∆ρ−∆r · ∇ρ0) +∇ · ((ρ0 +∆ρ−∆r · ∇p0)∆u)

=
∂∆ρ

∂t
−∆u · ∇ρ0 +∇ · (ρ0∆u) =

∂∆ρ

∂t
+ ρ0∇ ·∆u ⇒ ∂2∆ρ

∂t2
= −ρ0∇ · ∂∆u

∂t
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and p becomes, neglecting gravity for some reason,

∂∆u

∂t
+ (∆u · ∇)∆u = − 1

ρ0 +∆ρ−∆r · ∇ρ0
∇(p0 +∆p−∆r · ∇p0)

Before continuing the derivation, it is useful to consider the quantity ∇(∆r · ∇p0). This
quantity’s x-component is, by definition:

∂(∆r · ∇p0)

∂x
≡ lim

δx→0

δx[∇p0]x +

0︷︸︸︷
δy [∇p0]y +

0︷︸︸︷
δz [∇p0]z

δx
= [∇p0]x

from which we can conclude that ∇(p0 −∆r · ∇p0) = 0. To first order we then have

∂∆u

∂t
= − 1

ρ0
∇(∆p) = − 1

ρ0

dp

dρ

∣∣∣∣
ρ0

∇(∆ρ) = − c2

ρ0
∇(∆ρ)

where we assume a barotropic equation of state p = p(ρ) and that c is independent of r. The
form of c depends on whether the wave passes through isothermally or adiabatically. In the
isothermal case, p = ρkBT/µmH and so c =

√
kBT/µmH =

√
p/ρ. For the (more common)

adiabatic case, p ∝ ργ ⇒ c =
√
γp/ρ =

√
γkBT/µmH , greater by a factor

√
γ.

Substituting the above into MS, we have

∂2∆ρ

∂t2
= c2ρ0∇ ·

(
1

ρ0
∇(∆ρ)

)
(∗)

3.1.1 Uniform Media

In this case, (∗) simplifies to ∂2
t (∆ρ) = c2∇2(∆ρ), which is just the wave equation.

3.1.2 Stratified Media

In this case there is no simplification, but we can rewrite (∗) as

∂2∆ρ

∂t2
= c2∇2(∆ρ)− c2

∇ρ0
ρ0

· ∇(∆ρ)

which has a damping term. On substituting a disturbance of the form ∆ρ ∝ ei(k·r−ωt) and
the form of ρ0, one can find ∆u from MS, and also the dispersion relation. Often there is an
acoustic cutoff frequency below which k becomes non-real. There may also be regions where
∆ρ/ρ0 ceases to be small as assumed, and the first-order analysis fails. A shock forms.

3.2 Shocks

Shocks are surfaces where the properties of a fluid are discontinuous on either side, as a result of
being forced above its sound speed. To deduce the discontinuity conditions (Rankine-Hugoniot
relations, RH1-3) consider Figure 1, in the frame of the shock. We integrate M, p, and E
across the (very thin) boundary to obtain the discontinuities, with the assumptions that mass,
momentum, and energy do not pile up at the shock front.

∂ρ

∂t
+

∂(ρux)

∂x
= 0 ⇒ ρux

∣∣∣∣
1

= ρux

∣∣∣∣
2

(RH1)
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ρ
∂u

∂t
+ρu ·∇u = −∇p ⇒ ρu2

x + p

∣∣∣∣
1

= ρu2
x + p

∣∣∣∣
2

; uy

∣∣∣∣
1

= uy

∣∣∣∣
2

etc. (RH2)

The discontinuity condition for E depends on whether the shock is isothermal or adiabatic.

3.2.1 Isothermal Shocks

Figure 1 | A Shock Front

T
∣∣
1
= T

∣∣
2
. As c =

√
kBT/µmH , this means the sound speeds

are also equal in this case. We also have p = c2ρ. Writing
ux = Mc where M is the Mach number, dividing RH2 by ρux

gives

M1c+
c2

M1c
= M2c+

c2

M2c
⇒ M1M2 = 1

Because M1 > 1 (as u1 > c to create the shock), the fluid slows
from supersonic to subsonic, the bulk KE being dissipated as
heat. RH1 then gives

ρ2
ρ1

=
u1

u2

=
u1

c2/u1

=
(u1

c

)2
= M2

1

3.2.2 Adiabatic Shocks

Instead, we have Q̇cool = 0, and so E becomes:

∂E

∂t
+

∂

∂x
[(E + p)ux] = 0 ⇒

[
ρ

(
1

2
u2 + e

)
+ p

]
ux

∣∣∣∣
1

=

[
ρ

(
1

2
u2 + e

)
+ p

]
ux

∣∣∣∣
2

⇒ 1

2
u2 + e+

p

ρ

∣∣∣∣
1

=
1

2
u2 + e+

p

ρ

∣∣∣∣
2

(RH3)

where we have used RH1 to divide through by ρux on both sides. Using e = 1
γ−1

p
ρ
,

e+
p

ρ
=

(
1

γ − 1
+ 1

)
p

ρ
=

γ

γ − 1

p

ρ
⇒ u2

2
+

γ

γ − 1

p

ρ

∣∣∣∣
1

=
u2

2
+

γ

γ − 1

p

ρ

∣∣∣∣
2

which is more commonly used. We note that c2 = γp
ρ
= γkBT

µmH
is not the same on both sides of

an adiabatic shock, as T 1 ̸= T 2.
Using RH1− 3, an annoying amount of algebra2 eventually gives

ρ2
ρ1

=
u1

u2

=
(γ − 1)p1 + (γ + 1)p2
(γ + 1)p1 + (γ − 1)p2

For a “strong” shock, p2 ≫ p1, and so ρ2
ρ1

→ γ+1
γ−1

; this could also be derived from the start
by assuming p1 ≈ 0. There is hence an upper limit to the density and velocity discontinuities
across a shock front (for a monatomic gas, this is a factor of 4).
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Figure 2 | A Supernova Blast Wave. In the high-quality final frame the velocities are given
relative to the shock front.

3.3 Supernova Blast Waves

When a supernova releases an energy E in a point-like explosion, material is swept outwards at
supersonic speeds by a strong adiabatic shock. The shocked material has a thickness D ≪ R
and contains all the material within a radius R at a density ρ1 =

γ+1
γ−1

ρ0, where ρ0 is the density
of the ISM. D must hence be given by

4

3
πR3ρ0 = 4πR2Dρ1 ⇒ D =

ρ0
ρ1

R

3
=

1

3

γ − 1

γ + 1
R

In the frame of the shock front, the velocity of the shock is u1 and that of the ISM is u0,
as shown in Figure 2. The velocity of the frame itself (relative to the ISM, or the point of
the explosion) is the negative of the velocity of the ISM, −u0. RH1 gives u1 = γ−1

γ+1
u0, so the

velocity of the shocked gas in the rest frame of the explosion is:

U = −u1 + u0 =
2

γ + 1
u0

Consider the pressure in the shocked region. We suppose that the ISM has negligible
pressure; RH2 then gives

p1 ≈ ρ0u
2
0 − ρ1u

2
1 = ρ0u

2
0

[
1− ρ1

ρ0

u2
1

u2
0

]
= ρ0u

2
0

[
1− γ − 1

γ + 1

]
=

2

γ + 1
ρ0u

2
0

Consider the momentum transported by the shocked region, which we suppose must be
sourced by the pressure on the inside of the shell, pin. We assume that this inner pressure
scales with the pressure within the shell, so that pin = αp1 (we soon derive α). The force
on the inside of the shell is 4πR2pin; the integrated magnitude of momentum carried out is
4
3
πR3ρ0U , thus

α
2

γ + 1
ρ0u

2
0︸ ︷︷ ︸

p1

4πR2 =
4

3
πρ0

2

γ + 1

d

dt

(
R3u0

)
⇒ αu2

0R
2 =

1

3

d

dt

(
R3u0

)
Now the frame is moving at a speed u0, which is also the rate of increase of the shell Ṙ, so

αṘ2R2 = 1
3

d
dt

(
R3Ṙ

)
. The solutions of this are of the form R ∝ tb, where b = (4− 3α)−1.

By dimensional analysis, the energy released must be E ∝ ρ0u
2
0R

3 ∝ t5b−2, but as energy is
conserved we require E ∝ t0. Thus b = 2/5 and α = 1/2.

2Write α = ρ1u1 = ρ2u2, substitute ui = α/ρi into RH2 and 3, eliminate α, then solve for ρ2/ρ1.
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4 Transonic Flows

4.1 Bernoulli’s Constant and Vorticity

Assuming a barotropic flow,∇p

ρ
= ∇p

(
d

dp

∫
dp

ρ

)
= ∇

(∫
dp

ρ

)
Using (u · ∇)u = ∇

(
1
2
u2
)
− u×∇× u and assuming steady state ∂/∂t = 0, p is

∇
(
1

2
u2

)
− u×∇× u = −∇p

ρ
−∇Φ ⇒ ∇

(
1

2
u2 +

∫
dp

ρ
+ Φ

)
= u×w

where the vorticity w = ∇× u. The quantity in brackets is Bernoulli’s constant:

H =
1

2
u2 +

∫
dp

ρ
+ Φ

If w = 0 everywhere, then ∇H = 0 and H takes the same value everywhere. If w ̸= 0, we can
instead take u· both sides, giving u ·∇H = 0, so H is only conserved along a given streamline;
different streamlines can have different H.

Relaxing the steady state requirement and taking the curl, gradients disappear and we
instead obtain Helmholtz’s Equation ∂w/∂t = ∇ × (u×w). Hence if w = 0 everywhere
initially then it will remain 0 thereafter. Also, Kelvin’s circulation theorem gives that the flux
of vorticity through a surface moving with the fluid is 0:

D

Dt

∫
S

w · dS =
D

Dt

∮
∂S

u · dℓ =

∮
∂S

Du

Dt
· dℓ+

∮
∂S

u · Ddℓ

Dt︸︷︷︸
(dℓ·∇)u

=

∫
S

∇×
(
−1

ρ
∇p−∇Φ

)
· dℓ+

∮
∂S

ui∂j(ui) dℓj

= −
∫
S

1

ρ2
(∇ρ×∇p)︸ ︷︷ ︸
0∵∥∵barotropic

·dS+

∮
∂S

∇
(
1

2
u2

)
· dℓ︸ ︷︷ ︸

0

= 0

An alternate proof is given in the notes but it doesn’t sit right with me somehow.
The integral

∫
dp/ρ depends on the barotropic EoS. For example:

Isothermal case:

∫
dp

ρ
=

kBT

µmH

ln ρ = c2 ln ρ

Polytropic case:

∫
dp

ρ
= K

(
1 +

1

n

)∫
ρ−1+1/n = K

(
1 +

1

n

)
nρ1/n = nc2

where we have used c2 = dp/dρ = K(1 + 1
n
)ρ1/n (not a constant) for the polytropic case.

4.2 De Laval Nozzle

Consider a compressible, barotropic, irrotational fluid moving through a z-oriented nozzle of
slowly-varying area A(z). The momentum equation gives

u · ∇u = −1

ρ
∇p ⇒ ∇

(
1

2
u2

)
= −c2

∇ρ

ρ
⇒ u2∇ lnu = −c2∇ ln ρ

10



Continuity is expressed simply by ρuA = Ṁ , a constant. Taking c2∇ ln of this,

c2∇ ln ρ+ c2∇ lnu+ c2∇ lnA = 0 ⇒ (u2 − c2)∇ lnu = c2∇ lnA

Hence at the points in the nozzle where A is at a minimum u is either stationary or passing
through u = c: undergoing a transonic transition. Such points are called sonic points.

4.2.1 Isothermal: p = ρkBT/µmH

Equating Bernoulli’s constant at a general point to its value at the sonic point:

1

2
u2 + c2 ln ρ =

1

2
c2 + c2 ln ρm ⇒ u2 = c2

[
1 + 2 ln

(
ρm
ρ

)]
= c2

[
1 + 2 ln

(
uA

cAm

)]
where m refers to quantities at the extremum of the nozzle and we have used conservation of
mass (ρuA = ρmcAm). Anyway this is an implicit equation for u(z) in terms of A(z); we can
then obtain ρ(z) through Ṁ = ρuA.

4.2.2 Polytropic: p = Kρ1+1/n

The speed of sound is no longer constant, and Bernoulli’s constant is also different:

H =
1

2
u2 + nc2

Mass conservation then gives an ugly expression for ρm:

ρuA = Ṁ = ρmcmAm = ρm

(
1 +

1

n

)1/2

K1/2ρ1/2nm Am

⇒ Ṁ2 =

(
1 +

1

n

)
Kρ(2n+1)/n

m A2
m ⇒ ρm =

( Ṁ

Am

)2
n

(n+ 1)K

n/(2n+1)

Then, using the Bernoulli constant and seeking ρ this time cause it’s easier:

1

2
u2 + (n+ 1)Kρ1/n =

(
n+

1

2

)
c2m

1

2

(
Ṁ

ρA

)2

+ (n+ 1)Kρ1/n =

(
1

2
+ n

)(
1 +

1

n

)
K

( Ṁ

Am

)2
n

(n+ 1)K

1/(2n+1)

This time giving an implicit expression for ρ(z) in terms of A(z); we can find u(z) using
continuity as above. Note that the RHS, though disgusting, is just some constant.

4.3 Spherical Flows

Consider steady-state spherically symmetric accretion of barotropic gas onto a point mass, such
that limr→∞ u = 0. Continuity gives that Ṁ = ρu(4πr2) is a constant, so

d ln ρ

dr
= −d lnu

dr
− 2

r

11



The momentum equation with u̇ = 0 and this time including gravity gives

u
du

dr
= −1

ρ

dp

dr
− GM

r2
⇒ u2d lnu

dr
= −c2

d ln ρ

dr
− GM

r2

Substituting from continuity ⇒ (u2 − c2)
d lnu

dr
=

2c2

r

(
1− GM

2c2r

)
We see again that there is a sonic point, this time at rs = GM/2c2.

4.3.1 Isothermal

Bernoulli’s constant now includes Φ = −GM/r. Hence equating H at a general point to at a
sonic point, and to the point at ∞ where u = Φ = 0,

1

2
u2 + c2 ln ρ− GM

r
=

1

2
c2 + c2 ln ρs −

GM

rs

1

2
c2 + c2 ln ρs −

GM

rs
= c2 ln ρ∞

= c2
(
ln ρs −

3

2

)
c2
(
ln ρs −

3

2

)
= c2 ln ρ∞

⇒ u2 = 2c2
[
ln

(
ρs
ρ

)
− 3

2

]
+

2GM

r
⇒ ρs = ρ∞e3/2

which together with Ṁ = 4πr2ρu gives parametric equations for ρ and u. Ṁ is then

Ṁ = 4πr2sρsc = 4π
G2M2

4c4
ρ∞e3/2c = πe3/2

G2M2ρ∞
c3

purely in terms of the parameters of the problem. Note Ṁ ∝ M2ρ∞T−3/2.

4.3.2 Polytropic

Bernoulli now gives:

1

2
u2 + (n+ 1)Kρ1/n − GM

r
=

(n−3/2)c2s︷ ︸︸ ︷
1

2
c2s + nc2s −

GM

rs
=

nc2∞︷ ︸︸ ︷
(n+ 1)Kρ1/n∞

where cs is the sound speed at the sonic point. On substituting for rs, the central quantity
becomes (n− 3/2)c2s, which is coincidentally 0 for a monatomic adiabatic gas. But this would
mean that ρ∞ = 0, which is one of the parameters of the problem so should be able to have any
value we choose! The resolution of this is that c2s = (n + 1)Kρ

1/n
∞ /(n − 3/2) is in fact infinite

at the sonic point (which is therefore at rs = 0), to allow for a finite ρ∞. The n = 3/2 case
doesn’t look doable; forgetting this edge case, using ρ ∝ c2n we have:

Ṁ = 4πr2sρscs = 4π

(
GM

2c2s

)2

ρ∞

(
cs
c∞

)2n

cs = π
G2M2ρ∞

c3∞

(
cs
c∞

)2n−3

= π

(
n

n− 3
2

)n− 3
2 G2M2ρ∞

c3∞

which is very similar to the isothermal formula but with a different prefactor instead of e3/2.
Taking the limit as n → ∞ of this term does actually give e3/2, consistent with the fact that a
polytropic equation of state reduces to an isothermal one as n → ∞.
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5 Instabilities

5.1 Convective Instability

If a fluid element is nudged upwards, it may be buoyantly forced further upwards. Suppose such
a fluid element initially has (p, ρ), equal to its surroundings, and moves upwards a distance dr
where the surroundings change to (p′, ρ′). Typically the pressure of the fluid element will follow
the surroundings, but its density evolves adiabatically: the fluid element then has (p′, ρ∗). If
ρ∗ > ρ′, the fluid element will simply fall back down, but if ρ∗ < ρ′, the element will be buoyant
and float further upwards. We have p = Kργ and p′ = Kρ∗γ, so

ρ∗ = ρ(p′/p)
1/γ

= ρ

(
1 +

1

p

dp

dr
δr

)1/γ

≈ ρ+
ρ

pγ

dp

dr
δr

whereas in the surrounding medium, ρ′ = ρ+ dρ
dr
δr. The equation of motion for a fluid element

will be, per unit volume:

ρ
d2δr

dt2
= −(ρ∗ − ρ′)g ⇒ d2δr

dt2
= −g

ρ

(
ρ

pγ

dp

dr
− dρ

dr

)
δr

If the brackets are positive, the system oscillates. The stability criterion ρ∗ > ρ′ is then:

ρ

pγ

dp

dr
δr >

dρ

dr
δr ⇒ d ln p

dr
> γ

d ln ρ

dr
⇒ d

dr

(
p

ργ

)
> 0

that is, if elements higher up have a higher K. Substituting T for ρ gives:

dT

dr
>

γ − 1

γ

T

p

dp

dr

Now dp/dr < 0 always, so positive T gradients are always stable; negative T gradients are
stable provided they aren’t too negative.

5.2 Gravitational Instability

A perturbation may cause an initially self-gravitating system to overcome gas pressure and
collapse. Consider a barotropic, static system which is initially uniform and self-gravitating,
and then introduce a perturbation : p = p0 + ∆p, ρ = ρ0 + ∆ρ0,Φ = Φ0 + ∆Φ,u = ∆u.
Then, substitute3 these into M, p,P, linearise, and move to Fourier space (that is, assume
each perturbation is of the form ∆□ = □1e

i(k·r−ωt)). This eventually gives:

−k2Φ1 = 4πGρ1 ρ0k · u1 = ωρ1 ωρ0u1 = kc2ρ1 + kρ0Φ1

⇒ ω2 = k2c2 − 4πGρ0 = c2
(
k2 − k2

J

)
where k2

J =
4πGρ0
c2

We see that high-k perturbations are non-dispersive (ω → c2k2), those with k ≳ kJ are
dispersive, and those with k < kJ , or a wavelength λ > λJ = 2π

kJ
=
√

πc2/Gρ0 lead to
gravitational instability. If the system is smaller than this, such perturbations cannot be
supported, so gravitational instability requires sizes larger than λJ , or equivalently a mass of
M > MJ ∼ ρ0λ

3
J ∝ c3ρ

−1/2
0 ∝ T 3ρ

−1/2
0 . Thus if a 1MJ system isothermally collapses (ρ0 ↑), the

system will contain more MJ and fragment.

3This technically requires in this case setting ∇2Φ = 4πGρ0, which cannot be true as ρ0 is assumed to be
infinite and uniform. However, relativistically this swindle turns out to be fine.
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5.3 Interface Instabilities

Figure 3 | Rayleigh-Taylor and Kelvin-Helmholtz instabilities

Consider two incompressible fluids in a uniform gravitational field, where the lower fluid
has ρ and horizontal velocity U , while the upper has ρ′ and U ′, as in Figure 3. A lengthy
derivation gives that instabilities along the surface have the following dispersion relation:

ρ(kU − ω)2 + ρ′(kU ′ − ω)
2
= kg(ρ− ρ′)

Suppose first that the two fluids are initially at rest. Setting U = U ′ = 0 gives ω2 = g ρ−ρ′

ρ+ρ′
k.

For ρ′ < ρ, such as air over oceans, this gives stable dispersive surface waves. For ρ′ > ρ, this
gives a Rayleigh-Taylor instability as the heavier fluid sinks into the lighter one.

Suppose the fluid is stable to RT (ρ > ρ′) but not at rest. The phase speed is then:

ω

k
=

ρU + ρ′U ′

ρ+ ρ′
±
√

ρ− ρ′

ρ+ ρ′
g

k
− ρρ′

(ρ+ ρ′)2
(U − U ′)2

If ω /∈ R, a Kelvin-Helmholtz instability arises, that is, if

ρρ′

(ρ+ ρ′)2
(U − U ′)

2
>

ρ− ρ′

ρ+ ρ′
g

k
⇒ k > g

(ρ2 − ρ′2)

ρρ′(U − U ′)2

Thus if g = 0, instability arises unless U = U ′ (surface waves). If g ̸= 0 then low k are stable.

5.4 Thermal Instability

A long series of derivations shows that a system is unstable to thermal instabilities if

∂Q̇cool

∂T

∣∣∣∣∣
p

< 0 (Field Instability)

This is fairly intuitive: if T being increased causes Q̇cool to decrease, i.e. cooling becomes
less efficient, T will then increase further and run away. The full analysis shows that even

Field-stable fluids are unstable for large wavelengths if ∂Q̇cool

/
∂T
∣∣∣
ρ
< 0.
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6 Viscosity

Figure 4 | A Linear Shear Flow

All the previous sections assume the mean free path λ =
0, so every particle in a given fluid element is moving
with the same (bulk) velocity u. For finite λ, thermal
velocity means that particles can be transferred between
fluid elements, the effect of which is that momentum can
be transferred perpendicular to the bulk velocity. It turns
out that this will reduce the stress tensor σij (see §1.2)
by σ′

ij, the viscous stress tensor.

6.1 Linear Shear Flow

Consider the “linear shear flow” shown in Figure 4, where the bulk flow u is in the i-direction
and depends on j, but there are also thermal velocities like |vj| = α

√
kBT/m where α ∼ 1, in

the other directions, which can carry molecules between the layers, which we can think of as
being separated by a distance δxj = λ = (nσ)−1. Now consider the momentum flux in the i-
direction carried across a surface area δA normal to the j-direction. With a density ρ, the total
momentum in the i-direction at a height xj is [ρδAδxj]ui(xj). The upward flux of i-momentum
is then the i-momentum transferred per area per time, equal to [ρδAδxj]ui(xj)/[δA(δxj/vj)] =
ρui(xj)vj. There will also be a downward flux of i-momentum coming from the layer above;
this will be −ρui(xj + δxj)vj. The net flux of i-momentum across this surface is then:

− ρ

nσ

∂ui

∂xj

vj = − m

πa2
∂ui

∂xj

α

√
kBT

m
= − α

πa2

√
mkBT∂jui ≡ −η∂jui

where η, the shear viscosity is temperature-dependent (∝ T 1/2 here; ∝ T 5/2 for plasmas) but
independent of ρ – denser gases have shorter λ but proportionally more particles to transport
the momentum. Hence η is constant for an isothermal fluid. The total force on the volume
bounded by δA and δxj will be the net force (flux × area) on its upper surface minus the net
force on its lower surface, which is

F ≡ ∂

∂t
([ρδAδxj]ui) = −

(
−η∂jui

∣∣∣∣
xj−δxj

+ η∂jui

∣∣∣∣
xj

)
δA ⇒ ∂

∂t
(ρui) = ∂j(η∂jui)

6.2 The Navier-Stokes Equation

By comparison with the definition of the stress tensor in §1.2, this would suggest that σ′
ij =

η∂jui. However, because σ′
ij has to be symmetric (to avoid unbalanced torques), isotropic,

Galilean invariant, and because it depends linearly on the ∂mun, the most general form is4:

σ′
ij = η

(
∂jui + ∂iuj −

2

3
∂kukδij

)
with the full stress tensor σij = ρuiuj + pδij − σ′

ij, we can then generalise p:

⇒ Du

Dt
= −1

ρ
∇p−∇Φ + ν

(
∇2u+

1

3
∇(∇ · u)

)
(NS)

4We have neglected bulk viscosity ζ which is only relevant in shocks.
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where we have assumed η is constant (isothermal) and defined the kinematic viscosity ν ≡ η/ρ.
The relevance of viscosity is encapsulated by the Reynolds number Re = UL/ν, where U and L
are velocity and length scales of the system. This is, roughly speaking, the ratio of inertial to
viscous forces: if Re ≫ 1, viscosity is irrelevant and the flow is turbulent. Introducing viscosity
tends to stabilise fluid instabilities.

Expanding the Lagrangian derivative, taking the curl, and assuming constant density, we
obtain a modified version of the Helmholtz equation:

∂w

∂t
= ∇× (u×w) + ν∇2w

The first term is carrying w with the flow; the second diffuses w through the fluid.

6.3 Viscous Dissipation

The rate of change of the kinetic energy density in a viscous incompressible fluid is

∂t

(
1

2
ρu2

)
= ui∂t(ρui) = −ui∂j(ρuiuj)− ui∂ip+ ui∂jσ

′
ij = −∂i

(
1

2
ρujujui + pui − σ′

ijuj

)
− σ′

ij∂iuj

The first term is the divergence of enthalpy and work done by viscous forces; the second is due to
viscous dissipation of kinetic energy into heat. For an incompressible fluid, σ′

ij = η(∂iuj + ∂jui),

so this component of the kinetic energy change is equal to −1
2
η(∂iuj + ∂jui)

2. 2LT decrees that
microscopic processes cannot convert heat to kinetic energy, so η ≥ 0.

7 Accretion Disks

• Axisymmetry: ∂ϕ = 0, • Equilibrium in the z-direction: uz = 0

• Keplerian angular velocity: Ω =
√

GM/R3 ⇒ uϕ =
√

GM/R

M then gives:

∂ρ

∂t
+

1

R

∂

∂R
(RρuR) +

1

R

0︷︸︸︷
∂

∂ϕ
(ρuϕ) +

∂

∂z

0︷ ︸︸ ︷
(ρuz) = 0 ⇒ ∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

Then, consider conservation of angular momentum for an annulus width ∆R at R. The
angular momentum in the annulus is [2πR∆RΣ]R2Ω = 2πR3∆RΩΣ; the bracket is the mass of
the annulus. The rate at which angular momentum is entering from inner R is [2πRΣuR]R

2Ω =
2πR3ΩΣuR; the bracket is the mass entering per unit time. There are also viscous torques aris-
ing from neighbouring annuli, which are moving at different speeds to the annulus in question.
Here we use an alternative and more conventional definition of η: the proportionality between
shear stress and velocity gradient, that is, F

A
= η du

dR
. In fact, in cylindrical systems, this is

modified to F
A

= ηR dΩ
dR

. Now the area over which some shear is being done is 2πR∆z, so
∆F = 2πRη∆zR dΩ

dR
= 2πR2 dΩ

dR
νρ∆z; integrating over z and multiplying by R gives the torque

G = 2πR3νΣdΩ
dR

exerted from within. Finally, the rate of change in angular momentum is equal
to the rate of AM entering from within, minus the rate of AM leaving outside, plus the torque
exerted from within minus the torque exerted outside, so cancelling factors of 2π:

d

dt

(
R3∆RΩΣ

)
=
[
R′3ΩΣuR

]∣∣∣∣
R

−
[
R′3ΩΣuR

]∣∣∣∣
R+∆R

+

[
R′3 dΩ

dR
νΣ

]∣∣∣∣
R+∆R

−
[
R′3 dΩ

dR
νΣ

]∣∣∣∣
R
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⇒ R3Ω
∂Σ

∂t
= − ∂

∂R

(
R3ΩΣuR

)
+

∂

∂R

(
R3 dΩ

dR
νΣ

)
= − ∂

∂R

(
R2Ω

)
RΣuR +R2ΩR

∂Σ

∂t
+

∂

∂R

(
R3 dΩ

dR
νΣ

)
⇒ ∂

∂R

(
R2Ω

)
RΣuR =

∂

∂R

(
R3 dΩ

dR
νΣ

)
⇒ 1

2
R−1/2RΣuR =

∂

∂R

(
−3

2
R1/2νΣ

)

⇒ ∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
R1/2νΣ

)]

where we have twice substituted from the conservation equation. Solving this equation shows
that if initially Σ(R, 0) ∝ δ(R−R0), then this ring will broaden and then relax to the centre.

Dimensional analysis gives a timescale of tv ∼ R2/ν = (Ruϕ/ν)(R/uϕ) = Re/Ω ∼ Re
orbital periods. But for thermal viscosity, Re ∼ 1014, which would give a viscous timescale
> tH . There is in fact extra “effective viscosity” from MHD turbulence, reducing Re.

In the steady state, it can be shown using intermediate results above that

νΣ =
ṁ

3π

(
1−

√
R∗

R

)
where ṁ = −2πRuRΣ is an integration constant interpreted as the accretion rate, and R∗ is a
radius where νΣ = 0 (no viscous torque), (e.g. surface of a star, ISCO of a black hole).

Recall that the rate of viscous dissipation of kinetic energy is ∂t
(
1
2
ρu2
)
= −1

2
η(∂iuj + ∂jui)

2,

in this case = −ηR2
(
dΩ
dR

)2
. Integrating this over z gives a dissipation rate per surface area of

νΣR2
(
dΩ
dR

)2
. Using the steady-state solution above, this is

Fdiss =
3GMṁ

4πR3

(
1−

√
R∗

R

)

⇒ T eff =

[
Fdiss

2σ

]1/4
=

[
3GMṁ

8πσR3

(
1−

√
R∗

R

)]1/4
L =

∫ ∞

R∗

2πR dRFdiss =
GMṁ

2R∗

The factor of 2 in the T eff is due to radiation from both top and bottom of the disk. The
luminosity is as expected from the virial conversion of 1

2
× gravitational potential to radiation.

8 Magnetohydrodynamics

8.1 MHD Equations

Consider two overlapping fluids, such as of protons and electrons. Continuity requires both

∂n+

∂t
+∇ ·

(
n+u+

)
= 0

∂n−

∂t
+∇ ·

(
n−u−) = 0

where u± is the bulk velocity of each fluid. The total density is ρ = ρ++ ρ− = m+n++m−n−,
and the centre-of-mass velocity is

u =
m+n+u+ +m−n−u−

m+n+ +m−n− ⇒ ∂ρ

∂t
+∇ · (ρu) = 0
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The charge density q = q++q− = e+n++e−n−, and the current density j = e+n+u++e−n−u−;

∂q

∂t
+∇ · j = 0

For momentum, we include the Lorentz force:

ρ+
(
∂u+

∂t
+ u · ∇u+

)
= −f+∇p− ρ+∇Φ + q+

(
E+ u+ ×B

)
where f+ is “the fraction of pressure gradient that accelerates positive charges”, whatever that
means; similarly for u−. Summing the two,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p− ρ∇Φ + j×B + qE

We also have Ohm’s Law j = σ(E+ u×B), for conductivity σ; for high σ we require E ⊥ B.
To close the system, require:

∇ ·B = 0 ∇ · E =
q

ϵ0
∇× E = −∂B

∂t
∇×B = µ0j +

1

c2
∂E

∂t
(Maxwell)

Looking at characteristic scales, we see from Maxwell 3 above that E/B ∼ u. This enables
one to simplify the momentum equation and Maxwell 4 for the case of non-relativistic plasmas
(u ≪ c), so that the terms outside the boxes become negligible.

Taking the curl of Maxwell 4, we obtain:

∇×(∇×B) = µ0σ[∇× E+∇× (u×B)] ⇒ ∂B

∂t
= ∇× (u×B) +

1

µ0σ
∇2B

where the term outside is neglected as σ is assumed large. This is analogous to the Helmholtz
equation for vorticity – hence in an analogous way to the Kelvin circulation theorem the
magnetic flux through a surface carried with the field is constant. This is called flux freezing.

8.2 Plasma Waves

The magnetic force/volume is fmag = j × B = µ−1
0

[
−∇

(
1
2
B2
)
+ (B · ∇)B

]
. The first term

is simply analogous to a magnetic pressure B2/2µ0; the second is magnetic tension, which
apparently acts to straighten bent field lines5.

Introducing linear perturbations ∆□ = □1e
i(k·r−ωt) to the new momentum equation, con-

tinuity, the flux freezing equation, ∇ · B = 0, assuming a barotropic equation of state and
neglecting gravity

ωρ0u1 = c2ρ1k+µ−1
0 B0×(k×B1) ωρ1 = ρ0k·u1 ωB1 = −k×(u1 ×B0) k·B1 = 0

which lead to the following complicated expression for u1:

ω2u1 = c2(k · u1)k+ (µ0ρ0)
−1×[(

B2
0(k · u1)− (B0 · k)(B0 · u1)

)
k− (B0 · k)(k · u1)B0 + (B0 · k)2u1

]
5The operator B · ∇ is the derivative along a field line

18



8.2.1 k ∥ B0: Alfvén Waves

Taking the dot product with k, we obtain6 simply ω2 = c2k2: the B fields play no part. This
is because these waves have u1 ∥ k ∥ B0.

Instead taking the cross product with k (removing terms proportional to k and B0) and
cancelling k × u1 gives ω2 = v2Ak

2, where vA = B0/
√
µ0ρ0 is the Alfvén speed. Noting that

k ·B1 = 0 ⇒ B1 ⊥ B0, we see that this describes non-dispersive magnetic Alfvén waves in the
B field lines, where the restoring force is magnetic tension.

8.2.2 k ⊥ B0: Fast Magnetosonic Waves

In this case, B0 · k = 0 so the above expression simplifies to ω2u1 = [c2 +B2
0/µ0ρ0](k · u1)k,

so u1 ∥ k ⊥ B0.
7 Dotting with k gives the following dispersion relation:

ω2 =

(
c2 +

B2
0

µ0ρ0

)
k2 =

(
c2 + v2A

)
k2

Here we have gas pressure (in c2) and magnetic pressure (in B2
0/µ0ρ0) acting together for a

compressive, longitudinal wave, faster than both sound and Alfvén waves.

6This is done most easily by writing B0 = B0ê and k = kê
7We see that waves with u1 ⊥ k ⊥ B0 are not supported. If you try, you will find ω = 0.
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