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1 Keplerian Orbits

The Lagrangian

1 1 . GM
L= —mr? 4+ —mr?¢® + m
2 2 r
gives the equations of motion:
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We then change variables to v = 1/r and eliminate the time-dependence of u and ¢ to obtain
u(¢). Firstly, note ¢ = hu?, and define v’ = du/d¢. Then

P = —% = —hg = —ha i=—hu"¢p = —h*uPu"
On substitution we then have
—h*uu” — hud = —GMu? = u" +u— CZJY =0
which if we don’t care about orientation, has solution
u(¢) = G;g/[(l + ¢ cos @) = r(¢) = ﬁ (h* = GMY)

where ¢ is an integration constant (> 0 wlog) which determines the shape of the orbit.

1.1 < 1: Elliptical Orbits

Apsides. There are constant minimum (periapsis) and maximum (apoapsis) distances to the
primary mass M. By inspection these are:
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Semi-Major Axis. The semi-major axis a of the ellipse is the average of the apsides:
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Energy. At the pericentre 1 = 0, so the energy per particle mass [ is easy to calculate!:
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so we see that the geometric quantities (¢, a, ) depend on the orbital quantities (h, F/, both h
and F') respectively.
Semi-Minor Axis. The semi-minor axis of the orbit, b, is found using Figure 1. We have

1— 2
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= Vb2 + a2e2 — ac? = a(l — ¢?) v + a*e? = a? = b=av1—c2

showing that ¢ represents the eccentricity of the ellipse.
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Figure 1 | Geometry of an Elliptical Orbit. A right-angled triangle is formed between the
ellipse’s centre, the primary, and the vertical, which forms an angle ¢; to the horizontal.

Period. The rate at which area of the ellipse is being swept out is constant (K2£):
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The area of an ellipse is mab = ma?v/1 — ¢2. The period of the orbit is thus
ma?y/1 — ¢2 2ra*y/1 — 2 2 5

a
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where we have used 1 = VGM/( = \/GMa(1 — ¢2). The proportionality 72 o a* is R3£.

IThe calculation at apocentre gives the same result.



1.2 > 1: Hyperbolic Orbits

Asymptotes. By inspection, r — o0 as ¢ — ¢, where

(oo = arccos (—1>

Energy. Most of the above derivation for an elliptical orbit still applies, however we can’t
identify a = £/(1 — ¢2) as a physical distance because it is negative for ¢ > 1. If we just define
a like that anyway, then as before

GM
2a
as now a < 0. This energy must be equal to %vgo
Impact Parameter. If gravity were switched off and the particle simply flew past the
primary, the impact parameter 0 is what its closest approach would be. The angular momentum
is thus i = bvy,. Using £ = %vgo, we have

o eMe
- 2E —GM/a

which sort of justifies the use of the letter b for the impact parameter.

E=- >0

b —la = —a*(1 — %) = b=—ave? -1

1.3 Binary Orbits

Suppose we no longer fix the larger mass in place and instead have two masses M; and M at
locations r; and ro. Define the vector d = r; — ro. Then
G(M; + M,)
23
which is the same equation for ¥ in the fixed-mass potential above, but with a primary M;+ Ms.

The vector d traces out an ellipse in the same way that r traces out an ellipse.
Period. The period is thus

d

d=F —f2=—
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where a is the semi-major axis of the ellipse traced out by d; also @ = (duin + dmax)/2-
In the centre-of-mass frame, Mir; + Msry = 0. Using d = ry — ry the positions of the two
masses r; and ro can thus be recovered in terms of d:
M, M,
—_ "2 3 Py — —— 1
My + My My + My

Angular Momentum. About the origin, the (massive) angular momentum vector is

M. 2 M 2
H =M F 4+ M. o = | M| ——2 My ——1 ) |dxd
1T Cr o AT X [ 1<M1+M2) " 2( M1+Mz)] .

d
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MM + MyM? MM,
(M, + My)2 M, + M,

There is thus a dynamical equivalence between two masses M; and M, orbiting each other,
and a mass p orbiting a fixed mass M; + M,.

where 1 =



2 Motion in Non-Keplerian Potentials

2.1 Radial Potentials

For a non-inverse-square-but-still-radial force law ® = ®(r) ¢ —1/r, orbits generally precess.

B = 1(dr)2+ﬁ+®(7) = g::t\/Q[E—(I)(r)]—E

AT dt

The time period for one oscillation will be double the time taken to go from pericentre to
apocentre, wherever they are on a given orbit. At these points, 77 = 0 by definition, so they
will be the two? radii rp and r, at which the above radicand is 0.

T = 2/ ¢ dr
o\ J2E - o) - 4

During this time, ¢ does not increase by 27 for general ®(r), but by

) Cfdejdt [ d
M_j{cw—]{ dr /dt d"”‘%/r rzﬂg—;(m -5
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If Ag/2m € Q, a whole number of radial oscillations will fit into a (different) whole number of
orbits of the primary, and the path will be closed. The rate of precession of the orbit is thus

AP — 2w
T,

If positive, the precession is prograde; if negative, retrograde.
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2.2 Excursions and Epicycles

Consider a circular orbit with radius r(t) = r. and angular velocity ¢(t) = Q, and perturb it
slightly while conserving angular momentum, so that now r(t) = r.+ €(t) and ¢(t) = Q +w(t):

h=r20=(re +e)*(Q+w) =~ r2Q+ 2r.eQ + r’w = rew = —2€f)
The general radial force® law # — r¢? = f(r) becomes:
Fot €= (re+6)(Q+w)? = f(re+e)
E—rP—e?—2rw Qx f(re) +ef'(re)
A N——~
—2€2 —r.02
E+ (3% — f'(re))e=0

So the radial excursions €(t) are simple-harmonic?, with frequency x = /302 — f/(r.); a
Keplerian force law has x = . The condition for stability is that x* > 0:

_3f(re) Flr) = 1 (3r2f(re) +72f'(r)) = —T—lg %[F’f(?”)}

)
r s

0<3— f'(r.) =

so we require 7 f(r) to have a negative slope at r = r..

2See Example Sheet Question 2.4
3e.g. for Kepler, f(r) = —GM/r?
4Provided the force law isn’t too steep



2.2.1 Epicycles

Relative to a frame which orbits the primary on the ordinary circular path r = r., ¢ = €, the
particle has a radial coordinate €(t) and a tangential coordinate y whose velocity is § = r.w =
—2¢0). We have seen that €(t) obeys ¢ + k%€ = 0, so we can write

20A

€(t) = Acoskt = y = —20QAcos Kt = y(t) = — sin Kt
K

The coordinates (e(t),y(t)) thus trace out a retrograde ellipse with frequency —&, which in
general is elongated tangentially®.

2.3 Axisymmetric Potentials

Consider now ® = ®(R, z). 2L is then

R (I ¥ L 0D 0d
— 2 = - 2 = ___ = — ° 5= -
R=Ro"=R-pr=—5p = R="7g T T
h?
q)eff =o + 2R2

where we define the effective potential ®.¢ in terms of the z-component of the angular momen-
tum vector /,. We assume that this potential is symmetric about z = 0. Expanding about the
stable point C' : (R, z) = (R,,0) where R, is the circular radius ( 0®cs/OR }C = 0), we obtain

0P 0Pg 1, 0*Pg O?D.g 1., 0?Pg
(I)e Rc ~ (I)e C e e + 2 e e L2 e
a(fet62) ~ QulC) + € p e | 2 o | T P aRez |, 2 o |,
———
0 0 0
1, P 1, 0P
_ (I)e C L2 e L2 e
(3¢ S |, T2 e |,
Differentiating and letting R = R. + €, 912£ gives
. 82(I)eff 2 .. aQ(DePf 2
oR* |, 022 |,

We see that the particle makes both radial and vertical oscillations with frequencies x and v.
If k # €, the orbit exhibits radial precession with a frequency Q, = Q — &; if v # ), the orbit
exhibits nodal precession® with a frequency 2, = Q — v. Further, & is given by:

0?* P 0*® 0? h? h?

K= ——r| = + < . > = —f'(R.) + 3=

OR? |, 0R?|. ORZ\2R?)|. R!
—30° — f'(R.)

as before.

5For Kepler, x = ) so the semi-major axis is simply double the semi-minor.
6 An orbital node being a point where the orbit intersects the z = 0 plane



3 Poisson’s Equation

V2® = +47Gp

3.1 Spherical Symmetry

For ®(r) = ®(r), Poisson’s Equation simplifies to
1
—(r®)" = 4rGp
-
which is simply integrated twice for ®(r) if p(r) is known. One boundary condition is that
®(0c0) = 0 conventionally; another is that ®(0) is finite, unless there is a point mass there.
Similarly, when solving in multiple regions, ® and V& should be continuous except in areas of
infinite spatial density (e.g. a line or surface density), in which case Gauss’ Law can be used.

Suppose p(r) follows a power law’:

o) =p(2) = ) = ppatr
T

poaa 3—«
o = A B
T e o AT
poaa 2—a
d(r) = —
(r) @—-2)3—a)

where A and B have been set to 0. For the total mass within small r to be finite, we require
a < 3, and for lim,_,,o ® = 0 we require a > 2, s0 2 < a < 3.
The potential due to a spherical shell, of radius " and mass dm, is

om dS2 1
B(r) = -G
(r) / Ar \/r2 4+ 12 — 2rr' cosf
Gom [*™ i 1
= d in6do
4/, ¢/0 o V12 12 — 21 cos 0

sm. [T d
:_GTm r—f (R=+/r2+1"72—2rr'cos?)
=/

) =Gom/r ifr>7’
| =Gem/r it r <

From this we see that within a spherical shell the potential is non-zero but constant, so there
is no force. Also, if we are outside a spherically-symmetric mass, the mass can be though of as
lots of shells going all the way down to the origin. The potential is additive, so the shells will
all give a 1/r dependence, and the overall potential will simply be —GM /r, the same as if it
were all concentrated at the centre.

3.2 Axisymmetric Distributions

If there is now 6-dependence, so ®(r) = ®(r, ), Poisson’s Equation is instead:

10/ ,00 1 o[, 0
_a_( 5) + m&(meﬁ) = 4nGp

"The usefulness of such models is always limited by the resulting divergence as r — 0.
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Outside the matter distribution, where p = 0, we have then Laplace’s Equation. Setting
O(r,0) = R(r)O(0), and separating, we obtain

1
LR + Sad (sin e@'): =0
n(n+1) fn(‘r;rl)

where n(n + 1) is a separation constant. The most general finite solution to the equation for
©(0) is
©(0) = A, P,(cosb)

where n is an integer and P, is the nth Legendre Polynomial. The most general solution to
the equation for R(r) is

n Cn
R(r) = B,r" + g
so most generally
O(r,0) = Z (Apr™ + Bur~ 1) Py(cos 6)
n=0

Depending on whether we are considering the region including » = 0 or » = oo, one of these
terms can be thrown away. Furthermore, density distributions will almost always be symmetri-
cal about 6 = /2, so terms with odd n are zero by symmetry. To find the remaining constants,
often there is a special radius or angle (such as the vertical axis # = 0) where the potential can
be deduced in other ways; the potential at all points in consideration can then be deduced,
though often only the first couple of terms are important.

3.3 Cylindrical Distributions — Thin Disks

We now change variables from (7, 0) to (R = rcosf, z = rsinf). In these coordinates, Laplace’s

Equation becomes
10 0P 0?P
o (Rom ) + 5 =0

ROR\ OR) " 922
This again separates ®(R, z) = R(R)Z(z) into
1 N/ 1 "
— —g" =
Rm(RiR) + 0
— k2 k2

For an infinitely thin disk, the solution for Z(z) is therefore Z(z) = Ay exp(—k|z|) to ensure
®’s finity at large z; the discontinuity is allowed by the infinite density in the disk. Meanwhile,
the equation for SR(R) is Bessel’s equation order v = 0. The finite solution is then R(R) =
BiJo(kER). Overall then,

B(R, z) = /OOO dk A(k) Jo(kR) exp(—H|2])

for some coefficients A(k)dk. To find out what A(k) is, apply Gauss’ Theorem to a pillbox
area S enclosing a portion of the disk, with surface density (R, z):

4wG25:S<8—@ _ o2 ):253_@
0 0z

0z

(by symmetry)

z=0+ 0+
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= 2§ /OO dk A(k)Jy(kR)k = —2S A(R)

where A(R) is the inverse Hankel transform of A(k).Hankel transforming both sides:

A(k) = —2rGL(k) = —27G /OO Y(R)Jo(kR)RdAR

= (R, z) = —21G /OOO (/000 E(S)Jo(k's)sds) Jo(kR)e ™ dk

The circular velocity v.(R) is given by

v 0P 0 o 2
Ze _ 97 _ 4 .
R OR|_, = Ve [ WGR/O (/0 (s)Jo(ks)s ds> Ji(ER)k dk}

-

v=0 transform
N 7

-—
v=1 inverse transform

3.3.1 Mestel Disk: ¥ =>¢Ry/R

The total mass contained within such a disk is

R
>
M(R) = /O ;fosz’dR’zzwzoRgR

which diverges. We further find

x > 2GR o
A(k) = —2nGSy R, / Jo(kR) dR = —% (> J,(x) dz = 1)
0
]
®(R, z) = —2nGSo Ry / EJO(kR)e*’ﬂZ‘ dk
0

Ve = \/27TG20ROR/ Jl(kR) dk = \ 27TG20R0 = \/ G]\fR(R)
0

so the radial velocity is actually constant, and it has a Keplerian form despite the non-sphericity
of the potential.

3.3.2 Exponential Disk: ¥ = ¥y 1/ Fq

This is a better fit to what is observed. The disk has a finite total mass:

M = / onRYpe /R AR = 2780 R2T(2) = 2780 R
0

R
(1+ K2R3y

apparently. ®(R, z) and v.(R) are then in unfortunate terms of modified Bessel functions.

A(k) = —2rG¥%, / e /R Jo(kRYRAR = —27G'%,
0



Figure 2 | Surface Brightness Parameters. R is the 2D distance on the night sky from the centre
as observed by an observer at x = oco; r is the physical 3D distance from the centre.

3.4 Surface Brightness Profiles

For a spherically symmetric star cluster or galaxy, the varying concentration of stars (assumed

spherically symmetric) will correspond to a surface brightness profile I(R) — a variation in

brightness on the sky as one looks a distance R away from the centre. Assuming the luminosity

density j(r) is proportional to the mass density, we can find a j(r) which corresponds to the

observed I(R), multiply by a constant to give p(r), and then solve V?® = 47Gp to find ®(r).
We first find the relation between I(R) and j(r), using Figure 2:

I(R) = Q/OOOj(x(r, R))dz = Z/ROOJ'(T)\/%

The inverse of this is something like®

2 d [~ RdR

_2d o RAR
O ARl =

but somehow I doubt it needs memorising.
A profile with an analytic inversion is the modified Hubble profile:

R2\ ! r2773/2 r2773/2
I(R) = 2j0“(1 + g) = J(r) =2jo [1 + ?] = p(r)=po [1 + @}
In this model the total mass diverges logarithmically. Setting this formula for p(r) equal to
V2® /471G gives, on integrating twice,
B(r) = 4xGpoa® In (v/r? :— a+r)

87’ve seen some wayward factors of 2 around here; they don’t really matter in deriving the density profile as
there is an unknown proportionality between luminosity density and mass density anyway.



4 Dynamics in the Milky Way

4.1 Velocity Profile

We now wish to know the circular velocity profile v(R) within our own Galaxy, from redshift
observations of gas, as this enables estimates of ®(r) and M(r), which ultimately are the
justification for the existence of dark matter.

Unfortunately, when observing things in our Galaxy, the distance d to the source is generally
unknown, as is its distance to the Galactic centre R. Also, rather than the orbital velocity v we
only know the line-of-sight recessional velocity v,, from redshifts. We do know, however, the
Sun’s orbital velocity v, distance to the Galactic centre Ry, and also the Galactic longitude [
of the object we are looking at. The situation is summarised in Figure 3 below.

Sun

|
Galactic center \ |

Figure 3 | Geometry of Milky Way Observations.
Known variables: v, Ry, [, d (for nearby stars), v, (not shown)
Unknown variables: v, R, «

4.1.1 Radial Velocities and Oort’s First Constant A

For a ray at a given angle [, there will be a range of v, observed in the gas, as there are a range
of orbital radii R that that ray will intersect. The largest v, will be where the line of sight is
tangent to the orbit — that is, with a = 0 — as this is the lowest-radius orbit touched by the
ray at [. For such orbits, v, = t,;max = v — v sinl (noting that v, is measured relative to the
motion of the sun), and sin/ = R/ Ry, so their orbital velocity is

UV = Upmax + Vo SIN 1 = Upmax + Vo

Ry

However, this will only work for |I/| < 7/2, because for |l| > m/2, the line of sight is never
tangent to an orbit.

Similar considerations can be used to deduce the orbital parameters of the Sun, using
observations of stars in the Solar neighbourhood. The recessional velocity is more generally:

v, = v CoSa — Vg sinl
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and the sine rule gives
sin/  sin (7—2r + Oz) COSs o

R R Ry
so eliminating «:
o= (Lo \Rosint~ [ (R- Ry L (2
U = (R RO>R051n1~ <(R Ry) dR<R>

Rysinl = Adsin 2]

Ro sin (
Ry

where we have restricted ourselves to nearby stars, made the approximation R — Ry ~ —d cos/,
and defined Oort’s first constant A:

1
Ry 2

Ry dQ

2 dR

Vg dv

Ry dR

R

Ro R0

4.1.2 Tangential Velocities and Oort’s Second Constant B

For stars in the Solar neighbourhood, the proper motion is often measurable, so we know its
tangential velocity v;. Geometrically, Figure 3 shows that this is given by v, = v sin a — vy cos (.
Now Rsina = Rycos! — d, so eliminating «:

v = (}% - %)Ro cosl — %d ~ —dcosl %(}%) N Rycosl — %(;d (+O(d?/R3))
_ _651(2_; - ;_(;) (1+ cos2l) — %(:)d
:AdCOSQZ—% j—;RO—l—;—Z d=d(Acos2l + B) BE—% %—F%RO
B is Oort’s second constant. To summarise, .
v, = Adsin2l A= % ;%_(Z) - % R
v = d(Acos2l + B) BE—% :%+%RO:

Thus plots of v, /d and v;/d against [ as we scan around the sky will be sinusoidal (though with
significant scatter due to velocity dispersion), and the values of A and B can be read off the
graphs: their values are about 15kms~'kpc™! and —12kms~'kpc~!. From their definitions,

o dv

—:Q():A—B

—| =-A-8B
Ry dR|,,

from which we can find the Sun’s orbital velocity (230kms™') and period around the Galactic
centre (230Myr); these suggest an enclosed mass of about 10 M.
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The Oort constants also reveal the Sun’s epicyclic frequency xy. Recall that

d dQ2
Ro RO

=4(A—-B?—4(A—-B)A=4A—-B)(A-B - A)=—4B(A - B)

Ko = 24/—B(A — B) J = — =2/ ——

For the Sun, this ratio is approximately 1.3, so the Sun’s orbit precesses retrograde.

5 Stellar Interactions

We aim now to describe the dynamics of a self-gravitating many-body system, such as a
globular cluster. Such systems are described on short timescales as collisionless, not (only)
because the constituent stars collide incredibly rarely, but because they are all so immensely
far away from each other relative to their size that interactions make only very small changes
to their trajectories and the potential is pretty smooth and constant.

5.1 Weak Encounters

Consider two stars of mass m, one of which (“the primary”) is “nailed down” at the point (0, b),
and the other (“the particle”) moves past at speed v and a large impact parameter b (along
the x-axis). To first order, this will not reduce the particle’s speed in the direction of travel, so
this will be constant, but it will impart a perpendicular component Av, to its velocity. The
force in the y-direction is given by:

—-3/2
I _Gm2§_ Gm2b _Gme 1+<§>2 *3/2_Gm2 - U_t 2 /
SR ST CTE 2 b T b
Gm [ N e
m v m
Av, = —— 1+ (= dt =
AT T m[+(b> bo

By assumption, Av, < v = %UQ > G'm/b, so we are looking at a situation where the stars are
very far apart (or moving very fast relative to each other).

Suppose a star makes a journey from one side of a cluster with N stars and radius R,
to another, through the centre. We wish to deduce the overall effect of the weak encounters
with all of the stars in the cluster on its journey. The number of stars which the star passes
within between b and b+ db of is approximately (27bdb)(N/7R?), where we have assumed a
constant surface density (perhaps using a surface density that is a function of R doesn’t change
things much). The total v, will probably be 0, because equally many cluster stars will tug this
star of interest in one direction as in the opposite direction. However, Av?s are expected to
accumulate in a random walk sort of way. On a single crossing, then,

R N [/2Gm\?> Gm\ 2 R am\ 2
2~ 27rbdb — =8N| — | 1 =8N| — | InA
g /b " wRZ( bv) ° <Rv) n(bmm) i (Rv) !

where by is the closest impact parameter; that is, Nwb2. ~ 7R? andsoln A ~InvVN ~ In N.

min

12



5.1.1 Relaxation Time

The system can only be described as collisionless on short timescales, as eventually the tra-
jectories of stars become scrambled and almost impossible to trace back. This will occur
when v? reaches order v?, which will be after a number 1., = v?/v? crossings. If we write

v &~ NGm/R, we have
1 <U2R>2 _0IN

Threlax ™ S8NIn N\ Gm T InN

and the relaxation time is SIMply relax = Nrelaxteross Where

. R | RS
Cross v ~ GNm

It is found that for galaxies teax ~ 10'6yr, whereas for globular clusters it is more like 10%yr.
As such the former are not (yet!) relaxed but the latter are.

5.1.2 Gravitational Drag

We now model a large mass M (such as a globular cluster, black hole, or big star) sweeping
through a field of (initially stationary) regular stars of mass m < M. As M slingshots lots
of ms, each of which robs it of a little momentum, M experiences a drag force. We assume
that all the stars whose trajectories are deflected by an angle m/2 or greater in the frame of
M lose all their momentum to M. The deflection angle depends on b, so there is some critical
impact parameter b, within which all stars give up their momentum to M. Deflection by 7 /2
corresponds to ¢, = 37/4 = arccos(—1/¢), so for this orbit ¢ = /2. Now b, = —ay/2 —1 =
—a, and F = %vz = —GM/2a = GM/2b, , where we recall that a < 0 for hyperbolic orbits,
and v is the speed of M relative to the field of small ms. We therefore find that b, = Ci—]¥

As the large mass passes through the field, in a time At it will pass (p/m)(wb? )(vAt) stars,
where p is the mass density and p/m the number density of stars. Each of these stars will
extract a momentum muv from the large mass, so the drag force will be

d 1 GM\°
F=MY =~ <£7rbivAt> mv = —7b? pv? = —7T( ) pv?
m

dt At 02
N dv  7G*Mp
dt v2

5.2 Gravitational Focusing

For a given “target radius” r; (perhaps the radius of a stellar atmosphere), there is a by so that
all bodies with impact parameters b < by come within r; of a mass M. This by is the impact
parameter for a hyperbolic orbit whose periapsis is the target radius. We have

1 GM 1
E = év; = — p + 51}2 h = byvee = 110
On eliminating v,, oG M v 2
b(g):’l“?|:1+ B :|:’I"t2 1+<BSC)]
T4UZ, Vo

where v is the escape velocity at r;. Often one of the terms in the squackets is much smaller
than the other and can be approximated out.
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5.3 Collisional Interactions

Clusters are generally not collisionless. For globulars, t...x ~ age; for open clusters, t,qa. <
age, so interactions must be important to the shape of clusters today. There are several
important processes governing the evolution of clusters.

In analogy with the behaviour of gases, we can use the virial theorem 27"+ & = 0, £ =
T+ ® = E = —T to show that 0FE/0T = —1. As the kinetic energy per mass T is a
measure of dynamical temperature, self-gravitating systems like clusters thus have negative
heat capacities. Gases have positive heat capacity, so removing some E decreases T', which
makes further transfer of energy slower as the T' gradient is then smaller. For negative heat
capacities, removing F causes an increase in T', meaning the T" gradient becomes larger and
more E gets transferred away faster — the system is unstable. Clusters thence end up with low-
energy, high-7" regions (in the core) and high-energy, low-T" regions (in the halo). Interactions
between stars continually move energy from the core into the halo as stars get flung outwards.
Over time, the core shrinks and the halo evaporates, leading to an “implosion” scenario known
as a “gravithermal catastrophe”.

Relaxation can give some stars v > Vs, leading to their escape. This can be imagined
as a fraction (deduced below) of a Maxwell-Boltzmann distribution having sufficient energy
to escape and being lost, and the remaining stars relaxing back to an MB distribution in a
time t,e1ax, and then some more escaping. . . this process is analogous to evaporation. The virial
theorem gives v2 = —®. The escape velocity is v? = 2T, = —2®. The mean-square escape
speed is then

7= [ pvZd*x _ 2

[ pdix M

Hence the rms escape velocity is double the rms velocity. In an MB distribution, a fraction

7.4 x 1073 of the stars have velocity greater than this, so would be expected to escape every

relaxation time. The evaporation time is expected then to be of order #,¢a,/7.4 X 1073, which
is trillions of years.

Alternatively, stars from the halo may be tidally stripped by a larger body (such as the
galaxy the cluster orbits).

Cluster cores often contain binary star systems; as the core becomes denser, more stars end
up in N > 2-body systems. Often being unstable, these can fling stars back out of the cluster,
“reinflating” it.

By equipartition, interactions tend to equilibrate the kinetic energies of stars. As such,
v2 oc m~ 1, so massive stars with lower v sink to the core; lighter stars get flung out to the halo.

A final important process in clusters is the mass loss due to stellar winds and supernovae.

6 Phase Space Analysis

Consider a large, collisionless system, such as a galaxy on timescales less than 10Gyr; this
will have a nice smooth ®(x,t). There are far too many (N) objects to individually model
the dynamics, so instead we use the function f(x,v,t) as a phase space density distribution
function in the 6-dimensional x-v phase space. [ is normalised so that

//f(x,v,t) dPxddv =1
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for all t. In words, f d3xd>®v is the probability that a star will be found with position in the
box [x,x+ dx| and velocity in the v-box [v,v+dv]. f is also differentiable, as for collisionless
processes, particles will not be rapidly jumping around in velocity space.

A given star has v = —V®(x,t). As such, writing the 6D vector w = (x,v), we have
w = (v,v) = (v, -V(x,1)).

6.1 Collisionless Boltzmann Equation

In fluid mechanics, the conservation of mass density gives

dp
ot
expressing that an increase in density at a point must be matched by an inflow. Similarly,

stars cannot be lost from phase space’, so an increase in star density in phase space must be
matched by a 6-dimensional inflow. In equations,

aof
ot

+ Vi (pv)=0

£V (fW) =0

The second term may be simplified

9. o ay( s\ o swor
Vo (1W) = 5, ) = 5 U"’Z”avi( ! axi)“axi Du; Ov

i

fo - VX(I) ° va

which on substitution gives the Collisionless Boltzmann Equation:

of
ot

of  of 9%0f _

v Xf V ¢ VVf - at + 8% B 8xz (%i

(CBE)

If f(x,v,0) is known, the CBE can be used to integrate it for all time.

Going back to the conservation equation of f, we can use a divergence identity V - (¢a) =
a-V¢+ ¢V - a and the fact that V - W = 0w;/0w; = 0v;/0z; + 0v;/0v; = 0 (as v; is
independent of z; and v; depends only on x;), to write

af

St W V=0 (+)

Then, defining the material derivative’® in the 6D phase space by

D 0
D_t_g—i_w V

like the derivative moving along with the phase flow, we can instead write [ Df/Dt=0 ],

which is Liouville’s Theorem.
The form (%) is the easiest to adapt to other coordinate systems. For example, in cylindrical

coordinates (R, ¢, z),

_of af

+

9...at least on small timescales
10Be aware that this has many different names, including Lagrangian derivative (from the notes of this course)
and convective derivative (from IB Classical Dynamics). Wikipedia lists 8 further names!
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of .of .0f af af af 0
_—(f+R—'f+¢—'f—|—Z'—(£+1)R—j+1')¢—f+1'}z_.

ot OR 0¢ 0 ovr Ovg f ..
_of  Of wvof | Of (vy 0®\Of 1 90\ of 020f
ot "R T Roe "oz T\ &R “or)ovr  R\""* T 35 ) v, ~ 0= ow.
where we have used
UR:R Uqb:RQ‘S v, =2

.. . 0o 1d . 10® 0P

_pi2_ 0% LTdpey__10% ;- 9%

R=HRe"=—55 Rdt (R ¢> R T

where the equations of motion on the second row eventually lead to

@—v—;—a—q) @——lfuv—ira—q)
R~ R OR ¢ TR\ 9e

Throughout one should remember that the v; must have units of velocity, but that the coor-
dinates themselves (like ¢) need not have units of length.

6.2 Jeans’ Equations

f is very abstract; we might instead know the number density of stars (v) and some velocity
stats:

v(x,t) = /f(x,v,t) d*v

1 1
Ti(x,t) = ;/vif(x,v,t) d*v 0;(x,t) = ;/vivjf(x,v,t) d*v

The evolution of these quantities is derived by taking moments of the CBE.

6.2.1 Oth Moment

Integrating CBE over velocity,

_ (9 Of 3 0P 3f3_ﬁ/ 3 3/,.3
O_/atdv+ vlaxidv oz, 8vidv_8t fdv—i—axi v f d°v

0

o 9, ov B ~

which looks kinda like the fluid dynamics conservation equation; the vector form is more easily
used for alternate coordinate systems. For instance, for axisymmetric systems J0 is

v 10
ot  ROR
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6.2.2 1st Moment

Multiplying the CBE by v; and then integrating,
o
0= afd?’v-i—/ 8f _6 / 8f

7ot Y B, oz, | Yn L
0 3 0 3 ovj , 4
3t/vjfdv+3z/vlvﬂtdv_ﬁxz(/ﬁvz i) d ' /8vi_fd\i
vuy VU U5 V 1’75:]
o 0 0P ~
= E(ij) + %(l/vfiv]) + Vo = 0 (J1)
i j

giving one form of the first moment equation. Ideally we would want to know 0v;/0t, for
which we need to subtract v; 0v/0t, using dv/0t = — 0(v7;)/0x; from JO:

R ) 0P

8t _U_jax(yv_i)_‘_%(ym)_‘_y%:() (31)
) 4 J

. . . . . 2 _ J— —\.
Defining a symmetric velocity covariance matriz o;; = (v; — 0;)(v; — v5):

7y = < / (vi = T)(v; =) f v

o, . 2 _ —_— —_— —_— o —_— . ~ . .
and rewriting as o = (v;v; — Tjv; — V0] + U0;) = T;0; — U; U;, we can rewrite J1 again as:

ov; od
Ox; or;

V—= +—(ya ) + vu;

31
5 G 0 (1)

reminiscent of one of Euler’s equations of fluid dynamics

pat +Vp+pu-Viu+pVe =0

6.2.3 Applications of Jeans’ Equations

It is often useful to assume steady state, and purely dispersive and isotropic motion:

9
ot

=0 U_z =0 0-1'2j = 025ij

with which J1 becomes simply V(vo?) + vV® = 0, reminiscent of hydrostatic equilibrium.
For a spherically symmetric cluster, if v(r) is known, then p(r) = mv(r), then V?®(r) = 47Gp
so ® can be found. Then o(r) can be found from the equation at the start of this paragraph.
With the assumptions made, o is related to the rms speed:

1 1 1
ViU — v; U_] =04 = 025ij = 0'2 = =04 = —V;V; = = <U2> = o= —
~—— 3

3 3

0
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The simplified first form of J1 can be applied to the Milky Way. MW is much thinner
than it is wide, so the characteristic length scales are very different in the z and z-y directions.
Choosing 7 = z and using isotropy and steady state, and simplifying Poisson’s equation,

0 [/ — 0P 0*d
( ) +v— =20 — =4nGp
z

P~ (5 ()

A particular advantage of this is that although p here is from Poisson’s equation and hence
refers to all mass, v could just be that of, say, G-type stars, making an analysis easier if
rather noisy due to approximating two derivatives over large distances. This can be reduced
by integrating p(R, z) once over a region of z to give X(R, < |z]):

_ [ N — L O (=
(R, < |z]) = /Z p(R,2")d = _27TGV£<VUZ>
the factor of 2 coming from the integration in both +2 and —z, assumed even. Observations
show that at the Sun’s R, ¥(R, < |1.1kpc|) ~ 7T0M, pc2, but just adding up the stars and
gas gives more like 40M pc™2, suggesting some dark matter.

Furthermore, the rotation curve observed is flat, i.e. v, is constant. As v?/R ~ GM(R)/R?,
we thus have that M(R) ~ R, or that the halo in which we reckon dark matter is in the shape
of has a density profile p ~ R~2. This ends up suggesting a dark matter halo contribution of
about Xp(R, < |1.1kpc|) ~ 30Mypc~? which adds up in the calculation above.

6.3 Jeans’ Theorem and Spherical Isotropic Systems

Jeans Theorem concerns constants of motion: quantities which are conserved throughout any
path which is a solution to the equations of motion. Example: for a free particle moving in 1D
at speed v, the quantity = — vt is a constant of motion. Another example: an orbiting particle’s
energy, or angular momentum.

An interesting subset of the constants of motion are the integrals of motion, which are
constants of motion which are not functions of time, such as an orbiting particle’s energy or
angular momentum. These are therefore a function of w, i.e. of x and v, so there is a value
of F (for example) associated with each point in phase space. Such integrals of motion reduce
the dimensionality of phase space that can be occupied by a particular star, which can only
go to parts of phase space with the same value of £. Denoting an integral of motion by a, we
have da/dt = 0 along an orbit, for instance d=/dt = 0.

Jeans’ Theorem states that if [ is a steady-state (0f/0t = 0) function of the integrals of
motion «;, then it will satisfy the CBE:

dt_ﬁai dt N

We now restrict our analysis to Spherical Isotropic Systems. In such systems, f(x,v) =
f(E(r,v)) = f(®(r)+3v?) is a function of £ alone, (hence the distribution of ¥ is isotropic; this
is not to say that everything is just moving radially, but everything is certainly not moving
e.g. azimuthally). According to Jeans’ Theorem, such f always satisfy the CBE, as F is a
constant of motion. If f is known, we can find v = [ fd®x and hence p, and hence @, and
hence f = f(®(r)+ 3v?): this circular train enables us to find a model which is self-consistent.

To avoid lots of awkward — signs, we define some silly new variables

= vV VDV, =0

18



e Relative Energy & = —F + ®y. This is also a constant of motion and so f(&) also
satisfies the CBE. ®; is some convenient constant, sometimes set to give f(&) particular
properties.

e Relative Potential V = —®(r) + ®&;. We thus have V*U = —47Gp, as well as
lim, oo V =&y, and & =V — %VQ.

A spherically symmetric system has V>0 = %2(7“2111’), = —4nGp. Writing" p(r) = mv(r)
(assuming stars have an average mass m), we have

Ld /[ ,dvy 5. qp2 /OO 9
7adr<TCW)-— 4an{/anvwiv__ 16n*Gm. | F(E(r,v))v* dv
- —167r2Gm/ f(\If(r) - %122) v? dv
0

If f(€) is known (or angesetzt) and the integral can be done, the above is an ODE in U(r),
which can be solved for ¥ and hence [ and hence p(r). We now give some Ansétze for f to
see what they give.

6.3.1 Polytropic Models
fE) = Fen32 es0| R0 - 102" v <v2U
0 £<0 0 v > V20

for constant F'. We then have

00 V2ou 1 n—3/2
p(r) = m/ 4rv* f(E(r,v)) dv = 47rmF/ (\If — 51}2) v? dv
0 0

(27)**T(n — $ymF
T(n+1) Cn (7> 0)

where on going to the final line we have used some non-examinable maths about I'(z), and we
rewrite the monstrous constant'? as the more amicable C,,. This is only the formula for p(r)
where r is such that W(r) > 0; for regions with W(r) < 0 we have £ < 0 and hence f = 0 and
p = 0. We then use Poisson to give:

1d rzd—‘ll ) —ArGCYT i W(r) >0
r2dr\" dr ) |0 rU(r)

Writing ¥ = Wg¢) and s = r/47GC, ¥, we obtain

1d 32% D L(T) >0 (Lane-Emden)
s2ds\ ds 0 r:u(r) <0

which is the Lane-Emden'® Equation from fluid dynamics. The appropriate boundary con-
ditions are that at » = s = 0: we can wlog set v = 1 and let ¥y do the scaling of V;

Unlike the notes which redefine f; subsequent results may differ from the notes by a factor m
2Tncidentally, this constant also restricts finite solutions to n > 1/2
3More like Lame-Emden amirite
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di/ds o« — d®/dr = 0 as there is no gravitational force at » = 0. The most appropriate
analytic solution for this equation is for n = 5, and is known as the Plummer potential:

(s) = _ = p(s) o< (1 +5°/3)

V1+5s%/3

This density distribution is flat as s — 0 as observed, and also decays as s7° as s — 00 SO
contains a finite total mass. It describes globular clusters and dwarf galaxies well, but elliptical
galaxies poorly.

—5/2

5

6.3.2 Isothermal Model

— L E/o?
f(g) - (27‘(‘0’2)3/26
This has the useful property that [ o e~v*/20% yknow like a gas'*. We find:

> 2 ]_ ©© 2 2 2
p(r) = / Ar? f(E(r,v)) dv = pre/® W/ 4mv®e” 27" du = pre?/?
0

0 (2mo?

We could now substitute this p into Poisson to find W(r), and then find p; or we could substitute
U = o%In(p/p1) into Poisson and solve for p directly. We write

1d/, ,d B
T—za(raglnp)— AnGp

One solution to this, called the singular isothermal sphere is p(r) = Ar~? with A = 02/27G.
Not only singular, but also having a diverging mass, this solution is awkward. The other
solution has no analytic solution and the mass diverges anyway so it’s not much better.

6.3.3 King Models

0 =3/2( c/0?
fey [ <e 1) £>0
0 £<0

Like a truncated isothermal model. This cannot be solved analytically; at the first step p(V)
involves an error function. Numerical integration shows that there is a tidal radius r, at which
f(r > ry,v) = 0. These models are a good fit to globular clusters; it helps that there are a
couple of free parameters.

14Ope can calculate v2 = 302
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