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Weirdly there are no equations in the Formula Book for this course.

1 Harmonic Oscillator

Because I always forget the basics.

1.1 D = 1

The Hamiltonian is

Ĥ =
1

2M
P̂ 2 +

1

2
Mω2X̂2

Consider the operators

Â ≡ 1√
2Mℏω

(
MωX̂ + iP̂

)
Â† =

1√
2Mℏω

(
MωX̂ − iP̂

)
We find

Â†Â =
M2ω2X̂2 + iMω

[
X̂, P̂

]
+ P̂ 2

2Mℏω
=

Ĥ

ℏω
− 1

2
ÂÂ† =

Ĥ

ℏω
+

1

2

where we have used
[
X̂, P̂

]
= iℏ , derived later. We thus have:

Ĥ = ℏω
(
Â†Â+

1

2

)
≡ ℏω

(
N̂ +

1

2

) [
Â, Â†

]
= 1

where N̂ ≡ Â†Â. Its commutation relations with Â(†) are[
N̂ , Â

]
=
[
Â†Â, Â

]
= −Â

[
N̂ , Â†

]
=
[
Â†Â, Â†

]
= Â†

and thus if N̂ |n⟩ = n |n⟩, then

N̂Â |n⟩ = ÂN̂ |n⟩ − Â |n⟩ N̂Â† |n⟩ = Â†N̂ |n⟩+ Â† |n⟩
= (n− 1)Â |n⟩ = (n+ 1)Â† |n⟩
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so Â |n⟩ and Â† |n⟩ are both also eigenstates of N̂ , with eigenvalues different by ±1 respectively.
The square norms of these new states are:

⟨n|Â†Â|n⟩ = n ⟨n|ÂÂ†|n⟩ = n+ 1

But the norm of a state must be at least 0 (this is an axiom of a Hilbert Space), and so n ≥ 0.

The lowering process must therefore end at the state |0⟩ with n = 0, as then
∥∥∥Â |0⟩

∥∥∥2 = 0 ⇒
Â |0⟩ = 0. Using the norms above, we can then write the new states as:

Â |n⟩ =
√
n |n− 1⟩ Â† |n⟩ =

√
n+ 1 |n+ 1⟩

(give or take a phase), so that all the states |k⟩ are normalised. The prefactor is always the
largest of the two numbers involved. Given that we are starting at |0⟩, we can write:

|n⟩ = 1√
n!

(
Â†
)n

|0⟩

where the prefactor compensates for all the scalar multiplication that Â† does. As the states
|n⟩ are eigenstates of N̂ eigenvalue n, they must also be eigenstates of Ĥ = ℏω(N̂ + 1/2) with
eigenvalue ℏω(n+ 1/2), which is the spectrum of Ĥ in this case.

1.2 D = 3

Ĥ =
1

2M
P̂2 +

1

2
Mω2X̂2

Enter the vector operators:

Â ≡ 1√
2Mℏω

(
MωX̂+ iP̂

)
Â† =

1√
2Mℏω

(
MωX̂− iP̂

)
We now find

Â† · Â = Â†
i Âi =

M2ω2X̂iX̂i + iMω
[
X̂i, P̂ i

]
+ P̂ iP̂ i

2Mℏω
=
M2ω2X̂2 − 3ℏMω + P̂2

2Mℏω
=

Ĥ

ℏω
− 3

2[
Âi, Âj

]
= 0

[
Â†
i , Â

†
j

]
= 0

[
Âi, Â

†
j

]
= δij

It is now more convenient to think in terms of energy eigenstates |En⟩, rather than eigenstates
of what would be the diagonal tensor N̂. We require:

0 ≤

∥∥∥∥∥
3∑
i=1

Âi |En⟩

∥∥∥∥∥
2

= ⟨En|Â† · Â|En⟩ =

〈
En

∣∣∣∣∣ Ĥℏω − 3

2

∣∣∣∣∣En
〉

=
En
ℏω

− 3

2

and so the ground state energy E0 = 3ℏω/2. Applying any component of Â† to |E0⟩ will
generate a new state, and we can eventually build up a series of states:

|n⟩ = |nx⟩ ⊗ |ny⟩ ⊗ |nz⟩ =
1√

nx!ny!nz!

(
Â†
x

)nx
(
Â†
y

)ny
(
Â†
z

)nz

|0⟩

with energy En = (N + 3/2)ℏω where N = nx + ny + nz. Note the high degeneracy here of
(N + 1)(N + 2)/2, as there are many ways to obtain N quanta of energy from three different
contributions.
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2 Transformations

After a passive transformation (say, a shift or rotation of coordinates), the state of a particle will
be described by a new state. This state must still be normalised, however: if the transformation
is Û : |ψ⟩ → |ψ′⟩ = Û |ψ⟩, then we require ⟨ψ′|ψ′⟩ = 1. By writing |ψ⟩ = |ϕ⟩ + λ |χ⟩ for
arbitrary |ϕ⟩, |χ⟩ and λ, and imposing ⟨α|α⟩ = ⟨α|Û †Û |α⟩ for all states, one can show that Û
must represent a unitary operator, that is, Û †Û = 1.

Transformations form a group. There should exist a homomorphism between the unitary
transformation operators Û and the transformations themselves.

It is often known how transformations affect certain operators. Meanwhile, the transfor-
mation operators themselves must satisfy:

⟨ψ′|Q̂|ψ′⟩ = ⟨ψ|Û †Q̂Û |ψ⟩

and so an operator changes from Q̂ to Û †Q̂Û after the transformation.

2.1 Generators

Many transformations depend on a continuous parameter θ (a counter-example would be a
reflection). For those that do, infinitesimal transformations by δθ exist. We write

Û(δθ) = 1− iδθT̂ +O(δθ2)

where T̂ is independent of θ and called the generator of the transformation. In the limit,

∂Û

∂θ
= −iT̂ ⇒ ∂ |ψ⟩

∂θ
= −iT̂ |ψ⟩

Being unitary, we require

1− iδθT̂ + iδθT̂ † = 1 ⇒ T̂ = T̂ †

thus T̂ is Hermitian and so an observable. The transformation of operators then looks like:

Û †(δθ)ÂÛ(δθ) = Â+ iδθ
[
T̂ , A

]
⇒ ∂A

∂θ
= i
[
T̂ , A

]
A finite transformation Û(θ) can be made by applying the Û(δθ) operator N = θ/δθ times:

Û(θ) = Û(θ/N)N =

(
1− i

θ

N
T̂

)N
→ exp

(
−iθT̂

)
2.2 Translations

The translation operators will be represented by grey Û(a) for a translation by a vector a.
We know that on translation by a vector a, the expectation of the operator X̂ will shift by

a. Thus we can write down
Û †(a)X̂Û(a) = X̂+ a

on the grounds that the expectation value of either side is the new expectation value of a
system’s position after a translation by a.
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Operating through by Û , we find
[
X̂, Û(a)

]
= aÛ(a).

For an eigenstate of X̂ so that X̂ |x⟩ = x |x⟩, the translated state Û(a) |x⟩ has

X̂Û(a) |x⟩ = Û(a)X̂ |x⟩+ aÛ(a) |x⟩ = (x+ a)Û(a) |x⟩

and so Û(a) |x⟩ must be a multiple of |x+ a⟩. Taking its norm we find that this multiple must
have unit modulus, and is taken to be 1: Û(a) |x⟩ = |x+ a⟩.

The position space wavefunction of a given state |ψ⟩ is given by ψ(x) = ⟨x|ψ⟩. Translating
|ψ⟩ into |ψ′⟩ = Û |ψ⟩, we find that the new position space wavefunction is, as expected,

ψ′(x) = ⟨x|Û(a)|ψ⟩ = ⟨x− a|ψ⟩ = ψ(x− a)

2.2.1 Translation Generator

The generator of the translation operator turns out experimentally to be P̂/ℏ; that is:

Û(δx) = 1− iP̂ xδx/ℏ Û(x) = exp
(
−iP̂ xx/ℏ

)
Û(δa) = 1− iP̂ · δa/ℏ Û(a) = exp

(
−iP̂ · a/ℏ

)
The infinitesimal translation therefore obeys:(

1 + iδa · P̂/ℏ
)
X̂
(
1− iδa · P̂/ℏ

)
= X̂+ δa ⇒

[
X̂, δa · P̂

]
= iℏδa

but this is the case for any δa. Take δa = δaêx:[
X̂, δaP̂ x

]
= iℏδaêx ⇒

[
X̂, P̂ x

]
= iℏ;

[
Ŷ , P̂ x

]
=
[
Ẑ, P̂ x

]
= 0

More generally, by choosing other δa, we find
[
X̂i, P̂ j

]
= iℏδij.

We can find the effect of the momentum operator in position space. Infinitesimally,

ψ′(x)− ψ(x) = ψ(x− δa)− ψ(x)

⟨x|Û(δa)− 1|ψ⟩ = −δa · ∇ψ = − i

ℏ
δa · ⟨x|P̂|ψ⟩

⇒ ⟨x|P̂|ψ⟩ = −iℏ∇ψ(x)

Consider eigenstates |p⟩ of P̂: P̂ |p⟩ = p |p⟩, and their position space wavefunctions
ψp(x) ≡ ⟨x|p⟩. The translated wavefunctions

ψp(x− a) ≡ ⟨x− a|p⟩ = ⟨x|Û(a)|p⟩

=
〈
x
∣∣∣exp(−iP̂ · a/ℏ

)∣∣∣p〉 = exp (−ip · a/ℏ) ⟨x|p⟩

= exp (−ip · a/ℏ)ψp(x)

⇒ ⟨x|p⟩ = 1

(2πℏ)3/2
eix·p/ℏ

where the prefactor ensures that ⟨p′|p⟩ = δ(p− p′).
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2.2.2 Homomorphism

We must have Û(a)Û(b) = Û(b)Û(a), because translations commute. Thus

(1 + δaiP̂ i/ℏ)(1 + δbjP̂ j/ℏ) = (1 + δbjP̂ j/ℏ)(1 + δaiP̂ i/ℏ) ⇒ aibjP̂ iP̂ j = aibjP̂ jP̂ i

Because this is true for any δa and δb, we have
[
P̂ i, P̂ j

]
= 0.

2.3 Rotations

Rotation operators will be represented by BrickRed Û(α) for a rotation of |α| about the axis
α̂ through the origin.

On rotation specified by a vector α, the expectation of X̂ will translate according to

Û †(α)X̂Û(α) = R(α)X̂

where R(α) is the rotation matrix. For an infinitesimal rotation, R̂(δα) = 1 + δα×, that is:

Û †(δα)X̂Û(δα) = X̂+ δα× X̂ ⇒
[
X̂, Û(δα)

]
= Û(δα)δα× X̂

2.3.1 Rotation Generator

The generator of the rotation operator is Ĵ/ℏ:

Û(δα) = 1− iĴ · δα/ℏ Û(α) = exp
(
−iĴ ·α/ℏ

)
Substituting the former into the commutation relation above,

− i

ℏ
δαj

[
X̂i, Ĵ j

]
= ϵijkδαjX̂k ⇒

[
Ĵ i, X̂j

]
= iℏϵijkX̂k

[note the relabelling of i↔ j if you’re worried about the sign].

2.3.2 Homomorphism

Using R̂(δα) = 1 + δα× for two composed infinitesimal rotations δα and δβ, we find that

R(δβ)R(δα)−R(δα)R(δβ) = R(δβ × δα)− I

and thus the homomorphism gives[
Û(δβ), Û(δα)

]
= Û(δβ × δα)− 1

− 1

ℏ2
[
δβ · Ĵ, δα · Ĵ

]
= 1− i

ℏ
(δβ × δα) · Ĵ− 1

δβiδαj

[
Ĵ i, Ĵ j

]
= iℏϵijkδβiδαjĴk[

Ĵ i, Ĵ j

]
= iℏϵijkĴk

from which we can also find that
[
Ĵ i, Ĵ

2
]
= 0.
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2.3.3 Relationship with Translation

Composing an infinitesimal rotation δα with an infinitesimal translation δa gives

R(δα)(x+ δa)− (R(δα)x+ δa) = δα× δa = x+ δα× δa− x[
Û(δα), Û(δa)

]
= Û(δα× δa)− 1

− 1

ℏ2
δαiδaj

[
Ĵ i, P̂ j

]
= − i

ℏ
ϵijkδαiδajP̂ k ⇒

[
Ĵ i, P̂ j

]
= iℏϵijkP̂ k

This is the same form of Ĵ’s commutations with X̂ and Ĵ itself. Any operator with such a
relation with Ĵ is called a vector operator.

2.3.4 Composite Systems

For a composite system, a rotation can be considered in two parts: a translation of the system’s
centre of mass1 around an arc of a circle (keeping the body’s orientation fixed), and a rotation
about the centre of mass1; both use the same angle.

Circular Translation Û(δα). If the system is initially at x, and we translate around
about the origin by an angle δα, we have translated the system by δα×x. The transformation
operator for circular translations thus obeys

Û †(δα)X̂Û(δα) = X̂+ δα× X̂

which is satisfied by

Û(δα) = 1− i

ℏ
(δα× X̂) · P̂ = 1− i

ℏ
δα · L̂

where L̂ = X̂× P̂, from which we can find[
L̂i, X̂j

]
= iℏϵijkXk

[
L̂i, P̂ j

]
= iℏϵijkPk

[
L̂i, L̂j

]
= iℏϵijkLk

[
Ĵ i, L̂j

]
= iℏϵijkL̂k

which all follow from the commutation relations of X̂ and P̂.
System Rotation. This is more complicated, as in general we don’t know the internal

structure of our system; it may not have one. Defining the spin operator Ŝ ≡ Ĵ− L̂ and using
the commutators of Ĵ and L̂, it is simple to derive[

Ŝi, Ŝj

]
= iℏϵijkŜk

[
Ŝi, Ŝ

2
]
= 0[

Ŝi, X̂j

]
= 0

[
Ŝi, P̂ j

]
= 0

[
Ŝi, L̂j

]
= 0

2.4 Time Translation

Time translation operators will be represented by green Û(t) for a time translation through t.
Time translation means that we can write |ψ(t)⟩ = Û(t) |ψ(0)⟩.

The generator for time translations turns out to be Ĥ/ℏ, that is Û(t) = exp
(
−iĤt/ℏ

)
for

a time-independent Ĥ; importantly, [Ĥ, Û ] = 0. The difference

|ψ(t+ δt)⟩ − |ψ(t)⟩ = − i

ℏ
Ĥδt |ψ(t)⟩ ⇒ iℏ

∂ |ψ⟩
∂t

= Ĥ |ψ⟩ (TDSE)

1Or other point of interest of the system
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2.4.1 Heisenberg Picture

Consider the matrix element ⟨χ(t)|Q̂|ψ(t)⟩, where in general Q̂ may depend on time. This may
be written ⟨χ(0)|Û †Q̂Û |ψ(0)⟩ = ⟨χ(0)|Q̂H |ψ(0)⟩, where

Q̂H(t) = Û †(t)Q̂(t)Û(t)

is the operator Q̂ in the Heisenberg Picture. This is just an alternate way of looking at matrix
elements and expectation values: what we call the “state” of a particle is no longer |ψ(t)⟩, but
|ψ(0)⟩; the time evolution is now the operators’ job.

Differentiating the above, we find2

dQ̂H

dt
=
i

ℏ

[
Ĥ, Q̂H

]
+ Û †dQ̂

dt
Û (Heisenberg)

For example, if Ĥ = P̂2/2M + V (X̂), we obtain

dX̂H

dt
=

i

2Mℏ

[
P̂2, X̂

]
=

P̂

M

dP̂H

dt
=
i

ℏ

[
V (X̂), P̂

]
= −∇X̂V

2.4.2 Conservation

If Q̂ commutes with Ĥ (and thus Û), it is equal to Q̂H . Such operators are said to be conserved,
as their operation does not change in time.

This often occurs as a result of Ĥ being invariant under a transformation. If a transforma-

tion represented by Û(θ) = e−iθT̂ leaves Ĥ unchanged, we have Û †ĤÛ = Ĥ and so
[
Ĥ, T̂

]
= 0.

The observable T̂ therefore does not change with time. For instance, if Ĥ is invariant under
translations, then the translation generator P̂/ℏ, will not change with time (as expected if
there is no potential energy).

2.5 Summary of Useful Commutators

[
X̂i, P̂ j

]
= iℏδij

[
P̂ i, P̂ j

]
= 0

[
X̂i, X̂j

]
= 0[

Ĵ i, X̂j

]
= iℏϵijkX̂k

[
Ĵ i, P̂ j

]
= iℏϵijkP̂ k

[
Ĵ i, Ĵ j

]
= iℏϵijkĴk[

L̂i, X̂j

]
= iℏϵijkX̂k

[
L̂i, P̂ j

]
= iℏϵijkP̂ k

[
L̂i, L̂j

]
= iℏϵijkL̂k[

Ŝi, X̂j

]
= 0

[
Ŝi, P̂ j

]
= 0

[
Ŝi, Ŝj

]
= iℏϵijkŜk[

Ĵ i, L̂j

]
= iℏϵijkL̂k

[
Ĵ i, Ŝj

]
= iℏϵijkŜk

[
L̂i, Ŝj

]
= 0[

Ĵ i, Ĵ
2
]
= 0

[
L̂i, L̂

2
]
= 0

[
Ŝi, Ŝ

2
]
= 0

2Technically, Ĥ in the Heisenberg equation should be ĤH , but if Ĥ is time-independent (as we have assumed)
then Ĥ commutes with Û and there is no difference.
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3 Angular Momentum

3.1 Eigenstates of Ĵ2 and Ĵz[
Ĵ i, Ĵ j

]
= iℏϵijkĴk ⇒

[
Ĵ i, Ĵ

2
]
= 0

so although ∄ simultaneous eigenstates of all the components of Ĵ (and hence ∄ eigenstates of
Ĵ), ∃ simultaneous orthonormal eigenstates of Ĵz and Ĵ2, which we provisionally denote |β,m⟩:

Ĵ2 |β,m⟩ = βℏ2 |β,m⟩ Ĵz |β,m⟩ = mℏ |β,m⟩

Define:
Ĵ+ = Ĵx + iĴy Ĵ− = Ĵ†

+ = Ĵx − iĴy

⇒
[
Ĵz, Ĵ±

]
= iℏ

(
Ĵy ∓ iĴx

)
= ±ℏĴ±

[
Ĵ2, Ĵ±

]
= 0

Consider the state Ĵ± |β,m⟩. We find

ĴzĴ± |β,m⟩ = Ĵ±

(
Ĵz ± ℏ

)
|β,m⟩ Ĵ2Ĵ± |β,m⟩ = Ĵ±Ĵ

2 |β,m⟩

= (m± 1)ℏĴ± |β,m⟩ = βℏ2Ĵ± |β,m⟩

Ĵ± |β,m⟩ thus has the same magnitude of Ĵ, but more/less is in the z-direction: Ĵ± thus
reorients the system. The norm of the new state is given by:

0 ≤
∥∥∥Ĵ± |β,m⟩

∥∥∥2 = ⟨β,m|Ĵ∓Ĵ±|β,m⟩ =
〈
β,m

∣∣∣(Ĵ2
x + Ĵ2

y ± i
[
Ĵx, Ĵy

])∣∣∣β,m〉
=
〈
β,m

∣∣∣(Ĵ2 − Ĵ2
z ∓ ℏĴz

)∣∣∣β,m〉
= (β −m(m± 1))ℏ2

Thus we cannot apply Ĵ± to a starting state as many times as we want to; there is a floor and
a ceiling, that is, maximum and minimum values of m so that

β = mmax(mmax + 1) β = mmin(mmin − 1)

which is solved by mmin = −mmax. Calling j = mmax, and relabelling the eigenstates as |j,m⟩,:

Ĵ2 |j,m⟩ = j(j + 1)ℏ2 |j,m⟩ Ĵz |j,m⟩ = mℏ |j,m⟩

Ĵ+ |j,m⟩ =
√
j(j + 1)−m(m+ 1)ℏ |j,m+ 1⟩ =

√
(j +m+ 1)(j −m)ℏ |j,m+ 1⟩

Ĵ− |j,m⟩ =
√
j(j + 1)−m(m− 1)ℏ |j,m− 1⟩ =

√
(j −m+ 1)(j +m)ℏ |j,m− 1⟩

Getting from |j, j⟩ to |j,−j⟩ requires applying Ĵ− 2j times, so 2j ∈ N.
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3.2 Spin Angular Momentum Ŝ

All the above relations have been derived using the commutation relations obeyed by Ĵ, but L̂
and Ŝ obey identical relations, and so have eigenstates of the same forms |ℓ,m⟩ and |s, σ⟩.

The potential energy for an atom in a B field is −µ · B, where µ (the magnetic dipole
moment) is µ = γŜ and γ is a constant. Taking B = Bêz wlog, the Heisenberg picture gives:

d
〈
P̂
〉

dt
= γ

〈
Ŝz∇B

〉
so the force on a particle in an inhomogeneous magnetic field depends on σ, which can have any
value between −s and s in integer steps. In the Stern-Gerlach experiment, a beam of neutral
silver atoms was split into two, therefore they have s = 1/2, the smallest possible non-zero s.

3.2.1 s = 1
2

Systems with s = 1/2 inhabit a space with a basis

{|1/2, 1/2⟩ , |1/2,−1/2⟩}

more commonly denoted {|↑⟩ , |↓⟩}, so that any state |ψ⟩ = a |↑⟩ + b |↓⟩ for some a, b, |a|2 +
|b|2 = 1. Denoting this state by the vector (a, b)⊺ and knowing Ŝx = (Ŝ+ + Ŝ−)/2 and
Ŝy = (Ŝ+ − Ŝ−)/2i, we find the following matrices representing the action of the Ŝi operators.

Ŝi =

(
⟨↑|Ŝi|↑⟩ ⟨↑|Ŝi|↓⟩
⟨↓|Ŝi|↑⟩ ⟨↓|Ŝi|↓⟩

)

Ŝx =
ℏ
2

(
0 1
1 0

)
Ŝy =

ℏ
2

(
0 −i
i 0

)
Ŝz =

ℏ
2

(
1 0
0 −1

)

We often write Ŝ = (ℏ/2)σ̂, where σ̂ is the Pauli vector whose entries are the matrices (with-
out the prefactors) above. These matrices are Hermitian (so you only need to calculate one
triangle), traceless (so you don’t need to calculate the final term on the diagonal), and obey
the relevant commutation relations.

A similar set of matrices can be calculated for s = 1.

3.3 Orbital Angular Momentum L̂

Unlike with body rotations, circular translations are contractible to a loop of 0 size, which
turns out to preclude half-integer values of ℓ, and thus m. It can be shown that in spherical
polars,

⟨x|L̂z|ψ⟩ = −iℏ∂ψ(r, θ, ϕ)
∂ϕ

so position-space eigenfunctions of L̂z, ψℓm = ⟨x|ℓ,m⟩, satisfy the differential equation

mℏψℓm = −iℏ∂ψℓm
∂ϕ

⇒ ψℓm(r, θ, ϕ) = Kℓm(r, θ)e
imϕ
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for some function Kℓm. This gives another reason that ℓ ∈ N: if it were not, half-integer
values of m would be possible and the wavefunction would be multivalued. Calculating L̂+ in
spherical polars and setting L̂+ |ℓ, ℓ⟩ = 0 gives:

ψℓℓ(r, θ, ϕ) = R(r) sinℓ(θ)eiℓϕ

Calculating L̂− in spherical polars and repeatedly applying it to ψℓℓ, one finds that ψℓm =
R(r)Y m

ℓ (θ, ϕ), where Y
m
ℓ are the spherical harmonics. Importantly, these satisfy

Y m
ℓ (−x) = (−1)ℓY m

ℓ (x)

3.3.1 Spherical Potentials

It can be shown that

L̂2 = X̂2
(
P̂2 − P̂ 2

r

)
P̂ r =

1

2

 X̂∣∣∣X̂∣∣∣ · P̂+ P̂ · X̂∣∣∣X̂∣∣∣


where P̂ r is the radial momentum operator. As such, for a spherical potential

Ĥ =
P̂ 2
r

2M
+

L̂2

2MX̂2
+ V

(∣∣∣X̂∣∣∣)
[L̂i, X̂j] = iℏϵijkX̂k, so [L̂i, X̂

2] = 0, so the middle term can be written like that. Identical

commutations apply between L̂ and P̂, which gives the relations

[Ĥ, L̂] = 0 [Ĥ, L̂2] = 0

and thus ∃ simultaneous eigenstates of Ĥ, L̂2, and L̂z, denoted |n, ℓ,m⟩ after the respective
corresponding eigenvalues:

Ĥ |n, ℓ,m⟩ = Enℓ |n, ℓ,m⟩ L̂2 |n, ℓ,m⟩ = ℓ(ℓ+ 1)ℏ2 |n, ℓ,m⟩ L̂z |n, ℓ,m⟩ = mℏ |n, ℓ,m⟩

where we note that Enℓ cannot depend on m because [Ĥ, L̂±] = 0, though it will generally
depend on ℓ as L̂2 is in the Hamiltonian.

As the energy eigenstates of this problem will also be eigenstates of L̂2, we can rewrite

Ĥ |n, ℓ,m⟩ =

(
P̂ 2
r

2M
+
ℓ(ℓ+ 1)ℏ2

2MR̂2
+ V

(
R̂
))

︸ ︷︷ ︸
Ĥℓ

|n, ℓ,m⟩

where R̂ =
∣∣∣X̂∣∣∣. There will be (at least) (2ℓ+ 1)-fold degeneracy to each value of Enℓ, as each

of the 2ℓ+ 1 states with the same ℓ but different m will have the same energy.
D = 3 Harmonic Oscillator Revisited. In the first section, we used Cartesian coordi-

nates to derive the following results, which should be coordinate-independent:

En = (N + 3/2)ℏω gN =
(N + 1)(N + 2)

2
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We now reapproach this problem in spherical coordinates:

Ĥ =
P̂2

2M
+

1

2
Mω2X̂2 ⇒ Ĥℓ =

P̂ 2
r

2M
+
ℓ(ℓ+ 1)ℏ2

2MR̂2
+

1

2
Mω2R̂2

which is essentially one-dimensional. We then introduce ladder operators

Âℓ =
1√

2Mℏω

(
MωR + iP̂ r −

(ℓ+ 1)ℏ
R

)
with the final term noting the dependence on ℓ. Using the intuitive commutator [R̂, P̂ r] = iℏ

Ĥℓ = ℏω
(
Â†
ℓÂℓ + ℓ+

3

2

) [
Âℓ, Â

†
ℓ

]
= 1 +

(ℓ+ 1)ℏ
MωR̂2

= 1 +
Ĥℓ+1 − Ĥℓ

ℏω

[
Âℓ, Ĥℓ

]
≡ ÂℓĤℓ − ĤℓÂℓ = ℏω

[
Âℓ, Â

†
ℓÂℓ

]
= ℏω

[
Âℓ, Â

†
ℓ

]
Âℓ

= ℏωÂℓ +
(
Ĥℓ+1 − Ĥℓ

)
Âℓ

⇒ Ĥℓ+1Âℓ = ÂℓĤℓ − ℏωÂℓ

Consider |n, ℓ,m⟩, an eigenstate of Ĥℓ. Âℓ |n, ℓ,m⟩, however, is an eigenstate of Ĥℓ+1:

Ĥℓ+1Âℓ |n, ℓ,m⟩ = ÂℓĤℓ |n, ℓ,m⟩ − ℏωÂℓ |n, ℓ,m⟩ = (Enℓ − ℏω)Âℓ |n, ℓ,m⟩

So the new state Âℓ |n, ℓ,m⟩ must be a state with lower energy, but higher ℓ, than |n, ℓ,m⟩.
The square norm of the new state is

0 ≤ ⟨n, ℓ,m|Â†
ℓÂℓ|n, ℓ,m⟩ = Enℓ

ℏω
− ℓ− 3

2

and so one cannot continually apply Âℓ, taking the state to lower energies and higher ℓ, forever.
Each value of ℓ has a state |0, ℓ,m⟩ for which Âℓ |0, ℓ,m⟩ = 0. This state has energy

E0ℓ =

(
ℓ+

3

2

)
ℏω

and therefore the ground state, with ℓ = 0, is E00 = 3ℏω/2 as before.
Similarly, taking the adjoint of an above result,

Â†
ℓĤℓ+1 = ĤℓÂ

†
ℓ − ℏωÂ†

ℓ

So the state Â†
ℓ |n, ℓ+ 1,m⟩ is an eigenstate not of Ĥℓ+1, but Ĥℓ:

ĤℓÂ
†
ℓ |n, ℓ+ 1,m⟩ = Â†

ℓĤℓ+1 |n, ℓ+ 1,m⟩+ ℏωÂ†
ℓ |n, ℓ+ 1,m⟩ = (En,ℓ+1 + ℏω)Â†

ℓ |n, ℓ+ 1,m⟩

So Â†
ℓ |n, ℓ+ 1,m⟩ is a state of greater energy, but lower ℓ, than |n, ℓ+ 1,m⟩. One can therefore

take the state |0, ℓ,m⟩ and generate new states with higher energies and lower ℓ until reaching
a state with ℓ = 0.

11



Figure 1 | Angular Momentum Eigenstates
of the 3D Quantum Harmonic Os-
cillator. Example operations of Âℓ
and Â†

ℓ are shown in red. Each point
is annotated with the number of states
of different m at that point (2ℓ+ 1).

The situation is summarised in Figure 1.
For each value of ℓ, ∃ a minimum energy
state with energy E0ℓ = (ℓ+3/2)ℏω, and one
can generate new states of higher energy and
lower ℓ using Â†

ℓ, until reaching an ℓ = 0 state.
By summing the annotated numbers along

each row, the degeneracy of each energy level
is found to be (N +1)(N +2)/2, the same as
when we analysed it in Cartesian coordinates.

3.4 Two Particles

If we have two particles, the dimension of the
space of combined angular momentum states
is the product of the dimensions of the two:
(2j1 + 1)(2j2 + 1). Although this is spanned
by the basis {|j1,m1⟩ |j2,m2⟩}, it can be use-
ful to use a basis of total angular momen-
tum states {|j,m⟩}; we are switching from
an eigenbasis of Ĵ2

1, Ĵ1z, Ĵ
2
2 and Ĵ2z (the an-

gular momentum operators of the individual
systems) to an eigenbasis of Ĵ = Ĵ1 + Ĵ2 and
Ĵz = Ĵ1z + Ĵ2z.

We first find how these joint operators act on the joint systems, i.e. getting Ĵ2 and Ĵz in
terms of Ĵ2

1, Ĵ1z, Ĵ
2
2 and Ĵ2z. We write Ĵ2 = Ĵ2

1 + Ĵ2
2 + 2Ĵ1 · Ĵ2. The cross term can be written

in terms of the Ĵ i± and Ĵ iz, giving:

Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ1−Ĵ2+ + Ĵ1+Ĵ2− + 2Ĵ1zĴ2z

Also, Ĵz = Ĵ1z + Ĵ2z.
We now look for the eigenstates of these new joint operators. We suspect that the maximally

aligned state |j1, j1⟩ |j2, j2⟩, where both particles are maximally along the z-axis, will be a joint
eigenstate. We see that Ĵz |j1, j1⟩ |j2, j2⟩ = (j1 + j2)ℏ |j1, j1⟩ |j2, j2⟩, and

Ĵ2 |j1, j1⟩ |j2, j2⟩ = (j1(j1 + 1) + j2(j2 + 1) + 2j1j2)ℏ2 |j1, j1⟩ |j2, j2⟩
= (j1 + j2)(j1 + j2 + 1)ℏ2 |j1, j1⟩ |j2, j2⟩

Not only is |j1, j1⟩ |j2, j2⟩ therefore an eigenstate of the joint operators, the eigenvalues are
consistent with a state |j, j⟩ with j = j1 + j2; we can therefore write

|j, j⟩ = |j1, j1⟩ |j2, j2⟩

By acting on the LHS with Ĵ−, and on the RHS with Ĵ1− + Ĵ2− (which of course do the same
thing), one obtains all the other states |j,m⟩, with m ∈ {j, j − 1, . . . ,−j + 1,−j}, as a linear
combination of the joint states |j1,m1⟩ |j2,m2⟩ for which m = m1+m2. These can be the only

states involved if the state is to be an eigenstate of Ĵz = Ĵ1z+ Ĵ2z. Also,
[
Ĵ2, Ĵz

]
= 0, so these

states all have the same value of j; this is interpreted as the two states still being aligned with
each other, but at different angles to the z-axis and hence different m.

12



|j, j − 1⟩ |j − 1, j − 1⟩

Figure 2 | Different Alignments of
Joint Angular Momen-
tum States. I’m so good
at TikZ.

If the angular momenta of the two systems are not
aligned, states will be generated with smaller values of
j. The state |j − 1, j − 1⟩ represents a state where the
two systems are not perfectly aligned, but the same
amount of angular momentum is oriented along the z-
direction as of the state |j, j − 1⟩; this is represented in
Figure 2.

To construct |j − 1, j − 1⟩, note that it must be a
linear combination of {|j1, j1⟩ |j2, j2 − 1⟩ ,
|j1, j1 − 1⟩ |j2, j2⟩} to have the right value of m = j−1.
We can then use the fact that |j − 1, j − 1⟩ is orthogo-
nal3 to |j, j − 1⟩ (constructed earlier) as the two states
have different eigenvalues of Ĵ2 which is Hermitian. Al-
ternatively, we could use Ĵ+ |j − 1, j − 1⟩ = 0; either
way there remains only one possibility for the linear
combination. Once |j − 1, j − 1⟩ has been found, re-
peatedly apply Ĵ− = Ĵ1− + Ĵ2− to give all the states
|j − 1,m⟩, where m runs from j − 1 to 1− j.

The final picture is shown in Figure 3 below, for the combinations of (j1, j2) = (1, 1) and
(1, 1/2). The number of states in each diagram is (2j1 + 1)(2j2 + 1) – we have simply changed
basis so the dimension of the space cannot change.

Figure 3 | Angular Momentum Eigenstates of Joint Systems. (a) shows the combined angular
momentum eigenstates on combining a system with (j1, j2) = (1, 1); (b) has (j1, j2) =
(1, 1/2). Example operations of Ĵ− = Ĵ1−+ Ĵ2− are shown in brown. All states in a given
diagram are orthogonal to each other, but examples of states that must be constructed
using this orthogonality are shown in pink.

3Don’t be confused by the arrows drawn – orthogonality is meant in the Hilbert space sense!
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4 Identical Particles

If two particles are indistinguishable, then the states |α1;α2⟩ = |α1⟩ ⊗ |α2⟩ (where αi stands
for all the quantum numbers of particle i) and |α2;α1⟩ must be physically indistinguishable.
That is to say that they are the same state of the projective Hilbert space, and thus may only
differ by a phase eiϕ. Exchanging twice gets back to the same state, so e2iϕ = 1 and ϕ = 0 or
π. According to QFT, states representing a pair of indistinguishable particles with half-integer
spin obtain a negative sign on exchange; integer spin has an unchanged state. Half-integer-
spin particles are called fermions; integer-spin particles bosons. Two bosonic particles must
be in the state |ψb⟩ = 1√

2
(|α1;α2⟩+ |α2;α1⟩). Two fermionic particles must be in the state

|ψf⟩ = 1√
2
(|α1;α2⟩ − |α2;α1⟩). If α1 = α2, that is, the particles are in the exact same quantum

state, |ψf⟩ = 0: two fermions cannot exist in the same quantum state (Pauli).
The above means that composite particles obey the statistics of their total spin: nucleons,

consisting of three fermions, are themselves fermions and have half-integer spin; mesons consist
of two fermions, and are bosons with integer spin.

4.1 Inelastic Collisions

Particle physics often involves particles colliding together to make some new ones. If two
identical particles are created, their joint state will have a spatial part4 and a spin part:

|Ψ⟩ = |ℓ,m⟩ |s, σ⟩

The former corresponds to the mutual rotation of the two particles about their centre of mass
(orbital angular momentum); the latter corresponds to the orientation of their spins. Both
|ℓ,m⟩ and |s, σ⟩ may introduce a sign under exchange:

• For |ℓ,m⟩, as their position-space wavefunctions are the spherical harmonics Y m
ℓ (X2−X1),

exchanging will introduce a sign (−1)ℓ

• For |s, σ⟩, the exchange symmetry depends on its decomposition in |s1, σ1⟩ and |s2, σ2⟩.

If the two particles are fermions, then the overall sign change under exchange, the product of
those from |ℓ,m⟩ and |s, σ⟩, must be −1; for bosons the overall sign change must be +1. In
other words, the exchange symmetry of the spatial and spin parts of the wavefunction must be
opposite for fermions and equal for bosons. This provides constraints on the possible spatial
states (i.e. values of ℓ) and spin states that two particles can be created in.

4.1.1 Intrinsic Parity

Each particle has an intrinsic parity, for instance an electron has ηe = +1, so it would look the
same in a mirror. The overall parity of an ensemble of particles is the same before and after a
reaction5. The overall parity is the product of the parities of the individual particles and the
parity of the spatial wavefunction (−1)ℓ. This can provide a further constraint on the possible
values of ℓ, and hence (via exchange symmetry) on the possible spin states.

4There will be a radial component to this but it is not relevant here.
5. . . usually.
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5 Perturbation Theory

5.1 Time-Independent

For a Hamiltonian Ĥ which is similar to a familiar Ĥ0, we define the perturbation ∆Ĥ by

Ĥ ≡ Ĥ0 +∆Ĥ

Rather than trying to solve this Hamiltonian, we instead try to solve the λ-parametrised

Ĥλ = Ĥ0 + λ∆Ĥ

with the assumption that the Hamiltonian and its eigenstates are analytic in λ. We write

Ĥλ |Eλ⟩ = E(λ) |Eλ⟩ (λTISE)

E(λ) = E(0) + λE(1) + λ2E(2) + . . . |Eλ⟩ = |α⟩+ λ |β⟩+ λ2 |γ⟩+ . . .

Substituting E(λ), |Eλ⟩, and Ĥλ into (λTISE), and equating terms of the same order:

(Ĥ0 + λ∆Ĥ)
(
|α⟩+ λ |β⟩+ λ2 |γ⟩+ . . .

)
=
(
E(0) + λE(1) + λ2E(2) + . . .

)(
|α⟩+ λ |β⟩+ λ2 |γ⟩+ . . .

)
Ĥ0 |α⟩ = E(0) |α⟩ (λ0)

Ĥ0 |β⟩+∆Ĥ |n⟩ = En |β⟩+ E(1)
n |n⟩ (λ1)

Ĥ0 |γ⟩+∆Ĥ |β⟩ = En |γ⟩+ E(1)
n |β⟩+ E(2)

n |n⟩ (λ2)

• λ0: |α⟩ is an eigenstate of the familiar Hamiltonian. We can rewrite |α⟩ = |n⟩ where this
is an eigenstate of Ĥ0 energy E(0) = En, and seek the perturbations from this state and
its energy.

• λ1: Acting with ⟨n| gives the first-order energy modification

⟨n| Ĥ0︸ ︷︷ ︸
En⟨n|

|β⟩+
〈
∆Ĥ

〉
= En ⟨n|β⟩+ E(1)

n ⇒ E(1)
n =

〈
∆Ĥ

〉

Acting with ⟨m| st ⟨m|n⟩ = 0 gives the components ⟨m|β⟩ of |β⟩

⟨m| Ĥ0︸ ︷︷ ︸
Em⟨m|

|β⟩+ ⟨m|∆Ĥ|n⟩ = En ⟨m|β⟩ ⇒ ⟨m|β⟩ = ⟨m|∆Ĥ|n⟩
En − Em

thus provided the eigenstates of Ĥ0 are non-degenerate, we have found |β⟩ as the first
order state correction, as |β⟩ =

∑
m ̸=n |m⟩ ⟨m|β⟩ (n is excluded from the sum because

⟨n|β⟩ turns out to be 0).
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• λ2: Acting with ⟨n| gives:

En ⟨n|γ⟩+ ⟨n|∆Ĥ|β⟩ = En ⟨n|γ⟩+
〈
∆Ĥ

〉
⟨n|β⟩︸ ︷︷ ︸

0

+E(2)
n

⇒ E(2)
n = ⟨n|∆Ĥ|β⟩ =

∑
m̸=n

⟨m|∆Ĥ|n⟩ ⟨n|∆Ĥ|m⟩
En − Em

=
∑
m ̸=n

∣∣∣ ⟨m|∆Ĥ|n⟩
∣∣∣2

En − Em

This is an important formula, as it is the order at which interesting physical effects usually
come in. This is as high as we go in the perturbation series. Hence:

En(λ) = En + λ ⟨n|∆Ĥ|n⟩+ λ2
∑
m ̸=n

∣∣∣ ⟨m|∆Ĥ|n⟩
∣∣∣2

En − Em
+O(λ3)

For the case that En ̸= Em∀m ̸= n. The radius of convergence of this function is the smallest
λ for which the perturbation causes the physical situation to functionally change.

Degenerate perturbation theory is a scam. For a degenerate set of states, the perturbed
states will not have contributions from any state outside of that set. One can think of this as
degenerate states having the smallest energy differences (0!) and so the smallest denominators
in the state expansion for ⟨m|β⟩ above.

For problems with degenerate perturbation theory, one doesn’t really need any perturbation
theory. The dimension of the degenerate space is small enough that finding the perturbed states
essentially reduces to a simple eigenvalue problem.

Some examples follow, first for the non-degenerate cases of 1D QHOs and the fine structure
of hydrogen (this has degeneracy but that turns out not to matter), then for the degenerate
cases of the linear and quadratic Stark effect.

5.1.1 Perturbed 1D Harmonic Oscillators

Ĥλ =
P̂ 2

2m
+

1

2
mω2X̂2 +

{
−λmω2x0X̂
1
2
λmω2X̂2︸ ︷︷ ︸

∆Ĥ

In both cases the spectrum is in fact known, as the potentials can be rewritten in terms of
those of other harmonic oscillators:

1

2
mω2X̂2 − λmω2x0X̂ =

1

2
mω2(X̂ − λx0)

2 − λ2

2
mω2x20 ⇒ En =

(
n+

1

2

)
ℏω − λ2

2
mω2x20

1

2
mω2X̂2 +

1

2
λmω2X̂2 =

1

2
m
(
ω
√
1 + λ

)2
X̂2 ⇒ En =

(
n+

1

2

)
ℏω

√
1 + λ

The first case is thus simply an oscillator which has been translated and lowered; the second is
a strengthened oscillator. The radii of convergence are ∞ and 1, as when λ = −1 the second
potential becomes unstable. We now see how perturbation theory gives the right expansions.

Translated:

En(λ) =

(
n+

1

2

)
ℏω − λmω2x0 ⟨n|X̂|n⟩︸ ︷︷ ︸

0 by parity

+λ2m2ω4x20
∑
m ̸=n

∣∣∣ ⟨m|X̂|n⟩
∣∣∣2

(n−m)ℏω
+O(λ3)
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Using X̂ =
√
ℏ/2mω(Â+ Â†), we have

⟨m|X̂|n⟩ =
√

ℏ
2mω

(√
n+ 1δm,n+1 +

√
nδm,n−1

)
⇒ En(λ) =

(
n+

1

2

)
ℏω + λ2m2ω4x20

(
(n+ 1)

−ℏω
+

n

ℏω

)
ℏ

2mω
+O(λ3)

=

(
n+

1

2

)
ℏω − λ2

2
mω2x20 +O(λ3)

Strengthened: Similar (though more boring) calculations give:

En(λ) =

(
n+

1

2

)
ℏω
(
1 +

λ

2
− λ2

8
+O(λ3)

)
which of course agrees with the expansion of

√
1 + λ.

5.1.2 Hydrogen Fine Structure

This has never been examined (in astro), so maybe don’t worry about the, ahem, finer details.

Ĥ0 =
P̂2

2µ
− Ze2

4πϵ0R̂
(µ = memp

me+mp
)

The “Gross Structure” energies are

En(0) = −1

2
µc2
(α
n

)2
(α = e2

4πϵ0ℏc ≈
1

137
)

These are independent of ℓ, m, spin etc. There are three effects contributing at order α4:

• Relativistic KE • Spin-Orbit Coupling • Darwin term

Relativistic KE: P̂2/2µ is a non-relativistic approximation to the kinetic energy from√
P̂2c2 + µ2c4 ≈ µc2 +

P̂2

2µ
− P̂4

8µ3c2︸ ︷︷ ︸
∆Ĥ

One might think that because the system is degenerate the second-order terms with En−Em on
the denominator of the sum might blow up, however the numerator is also zero for degenerate
states, as we now derive. Two degenerate states can be written |n, ℓ,m⟩ and |n, ℓ′,m′⟩, with
either ℓ ̸= ℓ′ or m ̸= m′. Also, it can easily be shown that

[
∆Ĥ, L̂2

]
=
[
∆Ĥ, L̂z

]
= 0. Thus

0 =
〈
n, ℓ′,m′

∣∣∣(∆ĤL̂2 − L̂2∆Ĥ
)∣∣∣n, ℓ,m〉 0 =

〈
n, ℓ′,m′

∣∣∣(∆ĤL̂z − L̂z∆Ĥ
)∣∣∣n, ℓ,m〉

= (ℓ(ℓ+ 1)− ℓ′(ℓ′ + 1))ℏ2
〈
n, ℓ′,m′

∣∣∣∆Ĥ∣∣∣n, ℓ,m〉 = (m−m′)ℏ
〈
n, ℓ′,m′

∣∣∣∆Ĥ∣∣∣n, ℓ,m〉
Thus whether ℓ ̸= ℓ′ or m ̸= m′, we find that for different states6 |n⟩ ≠ |m⟩, ⟨m|∆Ĥ|n⟩ = 0.

As such, when we go back to the derivation in λ2, we have ⟨n|∆Ĥ|β⟩ = 0 and thus E
(2)
n = 0,

so the energy doesn’t run away.

6with apologies for confusing use of the letter m
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We now have to evaluate

E
(1)
nℓ =

〈
n, ℓ,m

∣∣∣∆Ĥ∣∣∣n, ℓ,m〉 =
〈
∆Ĥ

〉
Firstly, note that we can write

∆Ĥ ≡ − P̂4

8µ3c2
= −

(
Ĥ0 − V (R̂)

)2
2µc2

= −Ĥ
2
0 − Ĥ0V (R̂)− V (R̂)Ĥ0 + V (R̂)2

2µc2

E
(1)
nℓ = − 1

2µc2

(
E2
n − 2En

〈
V (R̂)

〉
+
〈
V (R̂)2

〉)
From the Virial Theorem, ⟨V ⟩ = −2 ⟨T ⟩ = En − ⟨T ⟩ ⇒ ⟨T ⟩ = −En ⇒ ⟨V ⟩ = 2En. Also, it
can be shown that to first order, 〈

V (R̂)2
〉
=

4nE2
n

ℓ+ 1
2

and so on substituting into these two terms gives

E
(1)
nℓ = − E2

n

2µc2

(
4n

ℓ+ 1
2

− 3

)
= −1

2
µc2
(

n

ℓ+ 1
2

− 3

4

)
α4

n4

where we find that the degeneracy between states of different ℓ has been lifted.
Spin-Orbit Coupling and the Darwin Term. An electron moving at relativistic speeds

will see the electric field be converted to magnetic field, and thus feel a perturbative force, with
a potential energy −me ·B. The dipole moment of the electron me = eS/2µ, and the B field
can be found from:

B = γv × E =
p

µ
× e

4πϵ0

x

|x|3
= − e

4πµϵ0

L

R3
⇒ ∆Ĥ =

e2

8πµ2ϵ0

L̂ · Ŝ
R3

L̂ · Ŝ can be written 1
2

(
Ĵ2 − L̂2 − Ŝ2

)
. Clearly we have

〈
∆Ĥ

〉
= 0 if ℓ = 0, so we are just

considering ℓ ≥ 17. For convenience we relabel the state |n, ℓ,m⟩ ⊗ |↕⟩ → |n, j,mj, ℓ⟩, where
the possible values for j are ℓ± 1/2 (no absolute signs because ℓ ≥ 1). The remaining steps in
the calculation are not particularly insightful, so the answer is just given below:

E
(1),SO
njℓ = −1

2
α4µc2

1

2n3ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

{
ℓ if j = ℓ+ 1

2

−ℓ− 1 if j = ℓ− 1
2

Overall we then end up with

E
(1)
n,j = −1

2
α2µc2

[
1

n2
− α2

n3

(
3

4n
− 1

j + 1
2

)]
+O(α6)

7However, if ℓ = 0, the Darwin term then applies, and this turns out to give the exact same energy
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5.1.3 Stark Effect

When a H atom is placed in a small constant homogeneous external E field, we have

∆Ĥ = −eΦ = eE ·X = eEX3

where wlog we have put E ∥ ẑ. In general, atoms are distorted by electric fields into dipoles
D, the energy of which is

Edip = −1

2
D · E

It will be useful to consider parity operations, under which X3 → −X3 and |n, ℓ,m⟩ →
(−1)ℓ |n, ℓ,m⟩. For example ⟨100|X3|100⟩ = 0, as the integral is odd over even bounds (R3).
Thus at first order the ground state is unaffected. The first excited state has quadruple degen-
eracy:

{|200⟩ , |211⟩ , |210⟩ , |21− 1⟩}

Again, by parity we have ⟨2ℓ0|X3|2ℓ0⟩ = 0 as the integrand is odd. Also,
[
L̂z, X3

]
= 0, so

0 =
〈
200
∣∣∣(L̂zX3 −X3L̂z

)∣∣∣21± 1
〉
= ∓ℏ ⟨200|X3|21± 1⟩

so ⟨200|X3|21± 1⟩ = 0. The only non-zero matrix elements are then ⟨200|X3|210⟩ and its cc,
which can be shown to be equal to −3a0. The perturbation can then be written

[
∆Ĥn=2

]
= −3eEa0


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


To recap, all of the n = 2 states are eigenstates of the unperturbed Hamiltonian Ĥ0 with the
same energy eigenvalue, as is any linear combination of these states. However, only those states
which are eigenstates of ∆Ĥn=2 (represented by the above matrix) will be eigenstates of the
new overall Hamiltonian. The eigenstates of ∆Ĥn=2 are

|200⟩ ± |210⟩√
2

, |211⟩ , |21− 1⟩ E
(1)
2 = ∓3e|E|a0, 0, 0

and so these are the eigenstates of the overall perturbed Hamiltonian. There will thus be a
splitting in the energies as the ℓ = 0 states mix together. The splitting is linear in |E|, so this
is the linear Stark effect.

Although unperturbed at first order, the second-order perturbation to the ground state
energy E1 is non-zero. No states are degenerate with |100⟩, so we can use non-degenerate
perturbation theory again. Applying the 2nd-order formula,

E
(2)
1 =

∞∑
n=2

n−1∑
ℓ=0

ℓ∑
m=−ℓ

e2|E|2 | ⟨n, ℓ,m|X3|100⟩|2

E1 − En

It turns out that only terms with ℓ = 1 and m = 0 will contribute to the sum, so

E
(2)
1 = e2|E|2

∞∑
n=2

| ⟨n, 1, 0|X3|100⟩|2

E1 − En

which is more tractable; it turns out to be equal to −9
4
a30|E|2
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5.2 Time-Dependent

Time-dependent perturbation theory usually arises from a quiescent system being perturbed
by a thing, leading to

Ĥ0 → Ĥ0 +∆(t)

Also, we are more interested in the transition rates between the eigenstates of Ĥ0, denoted
{|n⟩}.

If Ĥ0 were the entire Hamiltonian, the time evolution of a general state |ψ(0)⟩ =
∑

n an |n⟩
would be

|ψ(t)⟩ =
∑
n

ane
−iEnt/ℏ |n⟩

for constant an and Ĥ0 |n⟩ = En |n⟩. However, the perturbation means this is not what it
would be. We instead write

|ψ(t)⟩ =
∑
n

an(t)e
−iEnt/ℏ |n⟩

the “interaction picture” state, where an(t) are now time-dependent quantities, representing
the probability amplitudes for each state at a time t. From the TDSE,

iℏ
∑(

ȧn −
iEn
ℏ
an

)
e−iEnt/ℏ |n⟩ =

∑
(anEn + an∆(t))e−iEnt/ℏ |n⟩

(iℏȧk + akEk)e
−iEkt/ℏ = akEke

−iEkt/ℏ +
∑

ane
−iEnt/ℏ ⟨k|∆|n⟩

ȧk = − i

ℏ
∑

an(t)e
i(Ek−En)t/ℏ ⟨k|∆|n⟩

where ȧk ≡ dak/dt and we have multiplied by ⟨k| in the second step. For a small perturbation
the quantity ⟨k|∆|n⟩ is expected to be small. Integrating, we find

ak(t) = ak(t0)−
i

ℏ

∫ t

t0

∑
an(t

′)ei(Ek−En)t′/ℏ ⟨k|∆(t′)|n⟩ dt′

which is no more tractable but easier to approximate. Ordinarily we would Matryoshka this
equation into itself forever, giving a Dyson series, but this would give ever larger products of
⟨k|∆(ti)|n⟩, and as this is small we decide not to do this and instead approximate an(t

′) ≈
an(t0). This gives

ak(t) ≈ ak(t0)−
i

ℏ

∫ t

t0

∑
an(t0)e

iωknt
′ ⟨k|∆(t′)|n⟩ dt′

where we have defined ωkn ≡ (Ek−En)/ℏ. Now suppose the system starts at t0 in an eigenstate
|m⟩ ≠ |k⟩, so that an(t0) = δnm. The integral becomes:

ak(t) = − i

ℏ

∫ t

t0

eiωkmt
′ ⟨k|∆(t′)|m⟩ dt′

which is about as far as we can go without specifying a ∆(t).
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5.2.1 Forced QHO ∆(t) = −F0X̂e
−t2/τ2.

Suppose our system starts in the state |0⟩ at t = −∞. For other excited states |k⟩ at large
times t = ∞, we have

ak(∞) = − i

ℏ

∫ ∞

−∞
eiωk0t

′ ⟨k|−F0X̂e
−t′2/τ2|0⟩ dt′

=
iF0

ℏ
⟨k|X̂|0⟩

∫ ∞

−∞
eiωk0t

′
e−t

′2/τ2 dt′

Writing X̂ in terms of ladder operators and evaluating the integral,

=
iF0

ℏ

[√
ℏ

2mω

〈
k
∣∣∣(Â+ Â†

)∣∣∣0〉][√πτe−ω2
k0τ

2/4
]

=
iF0

ℏ

√
πℏ
2mω

δk1τe
−ω2

10τ
2/4

So there is no probability (to first order) of excitation to anything but the first excited state,
and the probability of reaching that state is

|a1(∞)|2 = F 2
0 π

2mℏω
τ 2e−ω

2
10τ

2/2

which is largest if τ ∼ 1/ω10.

5.2.2 Switching on a time-independent perturbation:

∆(t) =

{
0 t ≤ 0

∆(X̂, P̂ , . . . , ̸ t) t > 0

Suppose now that |ψ(t < 0)⟩ = |m⟩. For ak ̸=m, we find

ak(t) = − i

ℏ

∫ t

0

eiωkmt
′ ⟨k|∆(̸ t)|m⟩ dt′

= − 1

ℏωkm
(
eiωkmt − 1

)
⟨k|∆|m⟩

|ak(t)|2 =
4| ⟨k|∆|m⟩|2

ℏ2
sin2(ωkmt/2)

ω2
km

We would like to find how this depends on what the state |k⟩ is at large times. First consider
the function sin2(ωt/2)/ω2t, which is the second fraction above divided by t. Its integral over
all ω is equal to π/2 (for any t), and for any ω ̸= 0, its value for large t tends to 0. Thus it
must be equal to (π/2)δ(ω). We can then write:

lim
t→∞

|ak(t)|2 =
4| ⟨k|∆|m⟩|2

ℏ2
t
π

2
δ(ωkm)

And thus the transition rate at large times is

Γmk =
2π

ℏ2
| ⟨k|∆|m⟩|2δ(ωkm) =

2π

ℏ
| ⟨k|∆|m⟩|2δ(Ek − Em)

where we have used δ(x/ℏ) = ℏδ(x) to convert between delta functions of ω and E. So for a
time-independent perturbation, transitions can only be between degenerate states.
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5.2.3 Monochromatic Perturbations:

∆(t) =

{
0 t ≤ 0

∆e−iωt +∆†eiωt t > 0

for some ∆ which is indep of time. As always, beginning in the state |m⟩, we find

ak(t) = − i

ℏ

[
⟨k|∆|m⟩

∫ t

0

ei(ωkm−ω)t′ dt′ + ⟨k|∆†|m⟩
∫ t

0

ei(ωkm+ω)t′ dt′
]

= − ⟨k|∆|m⟩
ℏ(ωkm − ω)

[
ei(ωkm−ω)t − 1

]
− ⟨k|∆†|m⟩

ℏ(ωkm + ω)

[
ei(ωkm+ω)t − 1

]
We expect that transitions will only take place when ω = ±ωkm, corresponding to absorption
or stimulated emission respectively. Indeed one term will begin to dominate at large times, so
we will have either

|ak(t)|2 =
4

ℏ2

∣∣ ⟨k|∆(†)|m⟩
∣∣2

(ωkm ∓ ω)2
sin2

(
(ωkm ∓ ω)t

2

)
and so at large times, from similar considerations about δ functions in the previous subsubsec-
tion, we will obtain

Γmk =
2π

ℏ
∣∣ ⟨k|∆(†)|m⟩

∣∣2δ(Ek − Em ∓ ℏω) (Golden)

known as Fermi’s Golden Rule. This means that purely monochromatic light can’t cause
transitions between bound states (at rest); to cause transitions we therefore need to use a
range of frequencies.

Depending on the form of ∆, there may be some selection rules that apply, making certain
transitions impossible. Parity considerations can often be useful in deciding this.

6 Interpreting QM

[Note: The content in this section has only been examined in Astro once (2020, P4, Q6X(i)),
and even then it was only about the basics, and only in the smaller first half of the question.
As such, I haven’t bothered to painstakingly understand and type up everything the lecturer
talked about (much of which, like von Neumann entropy, wasn’t in the Schedules).]

6.1 Density Operators

When the state of a system is uncertain, such as with 1023 atoms, or with a non-isolated system,
we need a new framework. Rather than describing the system with a state vector, we describe
it using a density operator ρ. If the Classical probabilities of the system being in state |α⟩ are
pα, the density operator is written

ρ =
∑
α

pα |α⟩⟨α|

This is not to say that the system is in the state

|ϕ⟩ =
∑
α

√
pα |α⟩
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The system is not in a specific state, we don’t know what state the particle is in. All we know
is the probabilities that the particle is in a given state. Each of those states will in turn have
particular probabilities of giving particular results on measuring particular properties, but we
don’t generally know what the state is. In this sense, the probabilities are not objective, they
are practical. In the special case that we do know what state the system is in (say |χ⟩), the
density operator is then just ρ = |χ⟩⟨χ| and said to be pure.

ρ is defined by being Hermitian (ρ = ρ†), non-negative ( ⟨ψ|ρ|ψ⟩ ≥ 0 ∀ |ψ⟩), and complete
(Tr ρ = 1). This corresponds to probabilities being real, non-negative, and summing to 1. Any
operator satisfying these is a valid density operator. Note that the probabilities pα are generally
different from the density operator’s eigenvalues, which do not usually have much significance,
though in order for ρ to be non-negative, its eigenvalues must all be positive, and for Tr ρ = 1,
they must all be between 0 and 1.

ρ is pure ⇐⇒ ρ2 = ρ. To prove this, write ρ = |χ⟩⟨χ|. Then
ρ2 = |χ⟩⟨χ| |χ⟩⟨χ| = |χ⟩⟨χ| = ρ

so ρ pure ⇒ ρ2 = ρ. For the converse, ρ2 = ρ ⇒ ρ(ρ − 1) = 0, so ρ has eigenvalues that are
all either 1 or 0. But Tr ρ = 1, so exactly one of its eigenvalues are 1 and the rest 0. Thus
ρ = |χ⟩⟨χ| with eigenstate |χ⟩.

6.2 Trace of Operators

For a matrix A, the trace is given by the sum of its eigenvalues λi. If A is Hermitian, then
the eigenvectors can be chosen {vi} orthonormal and form an orthonormal basis. As such the
quantity ∑

i

v†
iAvi =

∑
i

λiv
†
ivi =

∑
i

λi = TrA

Also, the trace is conserved under a similarity transformation A → U†AU for general unitary
U, as Tr

(
U†AU

)
= Tr

(
UU†A

)
= TrA. Thus

TrA = Tr
(
U†AU

)
=
∑
i

v†
iU

†AUvi = Tr
(
u†
iAui

)
where the ui = Uvi are not eigenvalues of A, but are simply members of some general or-
thonormal basis. In a similar way, the trace of an operator Q̂ is

Tr Q̂ =
∑
α

⟨α|Q̂|α⟩

for any orthonormal basis {|α⟩}. Also, the trace is linear.
Expectation values can also be evaluated using the trace. For a system in a definite state

|ψ⟩ and an orthonormal basis {|β⟩}, the expectation value of an operator Q̂ is given by〈
Q̂
〉
ψ
= ⟨ψ|Q̂|ψ⟩ =

∑
β

⟨ψ|Q̂|β⟩ ⟨β|ψ⟩ =
∑
β

⟨β|ψ⟩ ⟨ψ|Q̂|β⟩ = Tr
(
|ψ⟩⟨ψ| Q̂

)
For an observable Q̂, the expectation value is naturally

∑
α pα ⟨α|Q̂|α⟩. This can be written

in terms of the density operator:〈
Q̂
〉
=
∑
α

pα ⟨α|Q̂|α⟩ =
∑
α

pαTr
(
|α⟩⟨α| Q̂

)
= Tr

(∑
α

pα |α⟩⟨α| Q̂

)
= Tr

(
ρQ̂
)

where we have used the linearity of Tr.
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6.3 Two-Spin System

Consider the basis {|↑⟩ , |↓⟩}, corresponding to spins maximally aligned along ẑ. If the system
is definitely in |↑⟩, the density operator is ρ = |↑⟩⟨↑|. If the system is equally likely to be in
either state, the density operator becomes

ρ =
1

2
(|↑⟩⟨↑|+ |↓⟩⟨↓|) = 1

2

This could equally be written as 1
2
(|↑x⟩⟨↑x|+ |↓x⟩⟨↓x|), which is in the basis of aligned spins

along x̂ and also equal to 1/2. This density operator admits no information at all about the
system, as all states are equally likely.

Any 2 × 2 Hermitian matrix is a linear combination of {I2×2, σi}, so a general density
matrix (a matrix representation of the density operator in this two-dimensional vector space,
basis {|↑⟩ , |↓⟩}) describing the orientation of the spin of a spin-1

2
particle is

ρ =
1

2
(I2×2 + b · σ) = 1

2

(
1 + bz bx − iby
bx + iby 1− bz

)
for some real vector b which we constrain below. The factor of 1

2
is to ensure that Tr ρ = 1;

all the σi are traceless. The determinant of this density matrix, equal to the product of the
eigenvalues, is 1

4

(
1− |b|2

)
, but as all the eigenvalues of the density matrix must be between 0

and 1, the determinant must also be between 0 and 1. As such, we require |b| ≤ 1, defining a
Bloch Ball of possible values of b corresponding to possible density operators to describe this
system.

• |b| = 1: the determinant is 0, so the eigenvalues are 0 and 1 and ρ is pure

• |b| = 0: ρ = 1
2
I2×2 and any pair orthogonal states (say |↑⟩ and |↓⟩, or |↑x⟩ and |↓x⟩) are

equally likely

• 0 < |b| < 1: the state is impure (mixed), but preferentially aligned along b

6.4 Entanglement

Suppose a system has multiple parts described by H1 and H2. A state |Ψ⟩ ∈ H1⊗H2 is said to
be entangled if it cannot be written |Ψ⟩ = |ϕ⟩ ⊗ |χ⟩ for |ϕ⟩ ∈ H1 and |χ⟩ ∈ H2. For a state to
be entangled means that its subsystems are correlated, and in a sense “talking” to one another.

It can sometimes be difficult to determine whether a state can be written in this way or
not. It becomes easier with reduced density operators, which involve taking the trace of the
joint density operator over just H2, say (that is, multiplying on both sides by an orthonormal
basis of this space and summing). If the system is entangled, the reduced density matrices will
be mixed, and vice versa.
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