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1 Special Relativity

The Lorentz Transformations:

dx′ = γ(dx− β dct) dct′ = γ(dct− β dx)

This transformation conserves the spacetime interval ds2 = c2 dt2 − dx2 − dy2 − dz2, ensuring
that the speed of light is the same for all observers.

The rapidity ψ ≡ artanh β, so:

β = tanhψ γ = coshψ γβ = sinhψ

so the Lorentz transformations can be written:

dx′ = coshψ dx− sinhψ dct dct′ = − sinhψ dx+ coshψ dct

1.1 Length Contraction & Time Dilation

1.1.1 Length Contraction

See Figure 1. We know ∆x′OA = ∆x′OB = L0, ∆ctOA = 0, we seek ∆xOA, and we do not know
∆ct′OA. We therefore use the equation which has the first three

∆x′OA = γ(∆xOA − β∆ctOA)

Substituting ∆ctOA = 0 and ∆x′OA = L0, we find that the length of the rod in S is ∆xOA =
L0/γ: the rod appears longer in its rest frame (S ′) by a factor of γ than in a different frame S.

1.1.2 Time Dilation

Similarly to ∆x′OA = ∆x′OB in the length contraction example, we have in this case ∆ctCE =
∆ctCD. With ∆x′CD = 0, ∆ct′CD = cT0, and ∆xCD unknown, we use one of the inverse Lorentz
formulae:

∆ctCE = ∆ctCD = γ(∆ct′CD − β∆x′CD︸ ︷︷ ︸
0

) = γ∆ct′CD ⇒ ∆t = γT0

to find that the lifetime in S is in fact dilated by a factor of γ.
The time between two events is always shortest in the frame in which they occur in the

same place (if such a frame exists). This is a result of the spacetime interval ∆s2 = c2∆t2 −
∆x2 −∆y2 −∆z2 being the same in all frames.
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Figure 1 | Spacetime Diagrams of Length Contraction. (a) shows the setup as viewed by S;
(b) shows the setup as viewed by S ′

Figure 2 | Spacetime Diagrams of Time Dilation. (a) shows the setup as viewed by S; (b)
shows the setup as viewed by S ′

1.2 Doppler Effect

A source moving at speed v emits light of period T0, as recorded in the source’s rest frame
S ′, and it passes an observer in S just as it emits a peak, which is immediately received (at
x = x′ = ct = ct′ = 0). In S ′, a time T0 later another peak is emitted back towards the observer;
in S, this time period is dilated, so from the point of view of an omniscient in the same frame as
the observer, the second peak is emitted after a time γT0. During this time, however, the source
has also moved vγT0 away from the observer, and the light has to travel back this distance for
the observer to see the second peak; this takes a further time vγT0/c = βγT0. Thus the total
time period that elapses between the peaks arriving to the observer’s telescope is:

T = γT0 + βγT0 = (1 + β)γT0 =

√
1 + β

1− β
T0 ⇒ f =

√
1− β
1 + β

f0

We see that the frequency of light is reduced if the source is heading away (receding) from us.
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1.3 Transformation of Velocities and Acceleration

To derive the transformation formulae, remember that velocities and accelerations in a given
frame involve differentiation with respect to time in that frame:

ux =
dx

dt
u′x =

dx′

dt′

ax =
dux
dt

a′x =
du′x
dt′

and similarly in the y- and z-directions. Some illustrative derivations:

u′x ≡
dx′

dt′
=

γ(dx− v dt)

γ(dt− v
c2

dx)
=

dx/dt − v
1− v

c2
dx/dt

=
ux − v

1− uxv/c2

u′y =
uy

γ(1− uxv/c2)

a′x ≡
du′x
dt′

=
1− uxv/c2 + (ux − v)v/c2

(1− uxv/c2)2
dux

1

γ(dt− v
c2

dx)
=

1− v2/c2

(1− uxv/c2)

1

γ(1− uxv/c2)2

dux
dt

=
ax

γ3(1− uxv/c2)3

a′y =
ay

γ2(1− uxv/c2)2
+
uyv

c2

ax
γ2(1− uxv/c2)3

In the final expression, there are two terms as u′y depends on both uy and ux, which can both
depend on t′. In each case, the inverse formula may be obtained by switching primed and
unprimed variables and switching v for −v. Although the value of the measured acceleration
depends on the frame (we don’t just have a′x = ax unless v = 0), if a = 0, then a′ = 0.

1.4 Worldlines in Spacetime

The path of a particle through spacetime (a worldline) can be expressed in a given frame
as (x(t), y(t), z(t)), or in a parametrised fashion, expressing t, x, y, z each as a function of a
parameter: (t(ζ), x(ζ), y(ζ), z(ζ)). A useful parameter is “proper time” τ , which is the time as
measured by an observer travelling along with the particle. The particle’s frame is called the
instantaneous rest frame (IRF, symbolised F).

Two events on the worldline of the particle, at τ and τ + dτ , by definition occur at the
same place in F , and so ds2 = c2 dτ 2. In S, moving relative to F at velocity u, the two events
are separated by a time dt and a spatial vector (dx , dy , dz) = u dt. As ds2 is invariant,

c2 dτ 2 = c2 dt2 − dx2 − dy2 − dz2 = c2 dt2
(

1− dx2 + dy2 + dz2

c2 dt2

)
= c2 dt2

(
1− v2

c2

)
⇒ dτ = dt /γ

and so the time between two events is shortest in the frame where they occur at the same
point. This enables any observer to calculate proper times between events:

∆τ =

∫
dτ =

∫
dt

γ
=

∫ √
1− v(t)2

c2
dt
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Suppose an accelerometer onboard a rocket reads f(τ ). The acceleration of the rocket as
viewed in another frame S can be deduced using the acceleration transformation formulae given
above, with x = ux = 0. Taking either F to play the role of the primed frame, using ux = v
(this is the speed of the particle of interest, which in this case is the origin of F), or using the
inverse formula and use ux = 0; either way we obtain ax = f(τ )/γ3, or:

dv

dt
=

(
1− v2

c2

)3/2

f(τ ) ⇒ dv

dτ
=

dt

dτ

dv

dt
=

(
1− v(τ )2

c2

)
f(τ )

This ODE can be simplified by using the rapidity: substituting v = c tanhψ,

c
dψ

dτ
= f(τ) ⇒ ψ(τ) =

1

c

∫ τ

f(ξ) dξ

where the lower bound is fixed by the initial velocity. We can also find t(τ ) and x(τ ):

dt

dτ
= γ =

1

1− tanh2 ψ
= coshψ ⇒ t(τ ) =

∫ τ

coshψ(ξ) dξ

dx

dτ
=

dx

dt

dt

dτ
= vγ = c tanhψ coshψ = c sinhψ ⇒ x(τ ) = c

∫ τ

sinhψ(ξ) dξ

where again the lower bounds are fixed by initial conditions. We can then find x(t).

2 Manifolds

2.1 Submanifolds

Subsets of points in a manifold M define submanifolds. A curve is a one-dimensional sub-
manifold, parametrised by a single coordinate u. If M is charted by a coordinate system
(x1, x2, ..., xN), the curve can be specified by setting each xa to be some function of u.

Higher-dimensional submanifolds are surfaces, requiring the coordinates xa to be paramet-
rised by as many parameters as the dimensionality of the surface.

If the dimensionality of the submanifold is just 1 less than the dimensionality of the manifold
N , the submanifold is a hypersurface, and the N − 1 parameters can be eliminated to give a
single constraint on all the coordinates: e.g. x2 + y2 + z2 = 1.

2.2 Coordinate Transformations

If I have a system of coordinates that chartM, so that any point can be specified by an N -tuple
(x1, x2 . . . xN) and you write yours as (x′1, x′2 . . . x′N), we can convert between the unprimed
and primed coordinate systems – that is, find the set of N functions x′a(xb) of N variables.

Using the chain rule and summation convention:

dx′a =
∂x′a

∂xb
dxb dxa =

∂xa

∂x′b
dxb

where we require the matrix
[
∂xa
/
∂x′b

]
to be invertible.
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2.3 Metric

In Euclidean space, the squared distance between two infinitesimally separated points is:

ds2 =
(
dx1
)2

+
(
dx2
)2

+ ...+
(
dxN

)2
= δab dxa dxb

On a general manifold, the squared infinitesimal distance takes the form ds2 = gab dxa dxb ,

where gab depends not only on the coordinate system used, but generally also on the location
in the manifold, and so can be written as a function of the xa. Wlog we can choose gab to
be symmetric in its indices; the metric is therefore specified for a given coordinate system by
1
2
N(N + 1) independent functions of position (of the xa).

The actual, true distance between these two neighbouring points does not depend on the
coordinate system in which this distance is measured in. Therefore, in a different coordinate
system, we find:

ds2 = gab dxa dxb = gab
∂xa

∂x′c
dx′c

∂xb

∂x′d
dx′d = g′cd dx′c dx′d where g′cd =

∂xa

∂x′c
∂xb

∂x′d
gab

Suppose we start with a known metric gab, and attempt to find a new coordinate system
x′a(xb) in which at a particular point the metric g′cd = δcd. It turns out that not only is
there always enough freedom in a general coordinate transformation to do this, there is some
“residual freedom”: not only are there infinitely many coordinate systems which would locally
have g′cd = δcd but there are 1

2
N(N − 1) residual degrees of freedom for an N -dimensional

manifold: six for N = 4, corresponding to the degrees of freedom in a general Lorentz transform
(a boost and a rotation).

For pseudo-Riemannian manifolds, the metric can be chosen to locally take some other
diagonal form, such as ηab = diag(1,−1,−1,−1), the Minkowski metric, which gives rise to the
Minkowski spacetime interval c2 dt2 − dx2 − dy2 − dz2.

We can in fact go further and find a coordinate system in which the manifold locally looks
even more like a Euclidean manifold, by imposing ∂g′ab/∂x

′c = 01. This is always possible, but
only just – there are no more residual degrees of freedom in our choice of coordinate transform.

We might wish to constrain ∂2g′ab/∂x
′c∂x′d = 0. However, the second derivatives of the

coordinate transformation (∂2xa
/
∂x′b∂x′c ) are overdetermined by this constraint, so no such

transformation exists. For a general manifold there exists no coordinate system in which all
the ∂2g′ab/∂x

′c∂x′d = 0, even locally. This is due to the manifolds’ intrinsic curvature.

3 Vector & Tensor Algebra

3.1 Scalars

Scalar fields assign a number to each point in the manifold. This assignment is to the points
themselves, not to the set of coordinates describing them in a certain system, so we must have
φ(xa) = φ′(x′b) if xa and x′b denote the same point.

1Such coordinates are called local Cartesian coordinates
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3.2 Vectors

Consider an N -dimensional manifold M and a point P ∈ M. The set of all possible local
vectors at P is an N -dimensional vector space, denoted TP (M) and pronounced the tangent
space of M at P . Consider the operator:

v = va
∂

∂xa

The set of operators of this form clearly obey all the axioms of a vector space (closure, linearity,
scalar multiplicability etc.), and is said to form TP (M). This space therefore has a basis
{∂/∂xa}, with va being the components.

In a different coordinate system x′b, the basis vectors are:

∂

∂x′a
=
∂xb

∂x′a
∂

∂xb

But for the actual physical vector operator to be independent of the coordinate system, its
components must transform in the opposite way:

v′a =
∂x′a

∂xb
vb

so that:

v = va
∂

∂xa
=
∂xa

∂x′b
v′b
∂x′c

∂xa
∂

∂x′c
=
∂x′c

∂x′b
v′b

∂

∂x′c
= δcbv

′b ∂

∂x′c
= v′b

∂

∂x′b

Thus the components do what components are supposed to: be the coefficients of the basis
vectors to form the vector in question. Any N -tuple which transforms in this way forms the
components of a vector. For example, the components of the infinitesimal displacement vector:

dx′a =
∂x′a

∂xb
dxb

or the tangent vector to a curve xa = xa(u) for a parameter u, d/du , whose components
dxa/du transform like:

dx′a

du
=
∂x′a

∂xb
dxb

du

3.3 Dual Vectors

The gradients of scalar fields have components:

Xa =
∂φ

∂xa

Their components transform in the opposite way to the components of vectors, and in the same
way as the basis vectors ∂/∂xa :

X ′a =
∂xb

∂x′a
∂φ

∂xb
=
∂xb

∂x′a
Xb

N -tuples which transform in this way form the components of a dual vector, and they also
obey the axioms of a vector space: the dual vector space T ∗P (M). Mathematicians sometimes
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introduce T ∗P (M) as a space of linear maps2 from TP (M) to R. Such a mapping is performed
by contracting a dual vector with a vector, giving a quantity like Xav

a which transforms as a
scalar:

X ′av
′a =

∂xb

∂x′a
Xb
∂x′a

∂xc
vc = δbcXbv

c = Xbv
b

3.4 Tensor Fields

We can extend this to define an object which constitutes a mapping from k copies of T ∗P (M)
and l copies of TP (M), to R. These mappings can vary over the manifold, taking copies of the
tangent and dual tangent spaces at any point on it; this defines a tensor field T, which is said
to be of type (k, l) and of rank k + l.

The tensor’s components are written as T a...bc...d , and they transform in the following way:

T ′a...bc...d =
∂x′a

∂xp
...
∂x′b

∂xq
∂xr

∂x′c
...
∂xs

∂x′d
T p...qr...s

The order of all of a tensor’s indices matter, not just those of upstairs and downstairs individ-
ually; for example T a d

bc e 6= T ad
b ce in general.

Tensor-valued objects are useful because they enable the writing of equations which are true
in whatever coordinate system one chooses. For example, if T ab = Sab in a certain coordinate
system, it must be true in all of them, the tensors are the same, and we can write S = T.
Similarly, if all the components Tab = 0 in one coordinate system, this must be true in all of
them and T = 0. This is to be compared with setting u = v or v = 0, where they are both
vectors; each component satisfies the equality individually.

3.4.1 Inner and Outer Products

The outer product of two tensors S and T is denoted S⊗T. For two rank-1 tensors (vectors) u
and v with components ua and va in some coordinate system, their tensor product T = u⊗ v
has components T ab = uavb in this system. T is a tensor3, as its components transform in the
right way:

T ′ab = u′av′b =
∂x′a

∂xc
uc
∂x′b

∂xd
vd =

∂x′a

∂xc
∂x′b

∂xd
T cd

Any object which is the tensor product of two tensors is itself a tensor. Generally, S⊗T 6= T⊗S.
Contraction is the action of setting an upstairs index equal to a downstairs index and

summing. For example, the tensor T abc can be contracted over its 2nd and 3rd indices to give
the vector Sa = T abb ; this is shown below to be a vector:

S ′a = T ′abb =
∂x′a

∂xc
∂x′b

∂xd
∂xe

∂x′b
T cde =

∂x′a

∂xc
δedT

cd
e =

∂x′a

∂xc
T cdd =

∂x′a

∂xc
Sc

Contraction converts a type-(k, l) tensor into a type-(k − 1, l − 1) tensor.

3.4.2 Quotient Theorem

The quotient theorem is a way of testing whether an object is a tensor or not: if one contracts
this object with an arbitrary tensor, and the result is another tensor, then the object in question
must have also been a tensor.

2This is the same relationship that bras have with panties kets in quantum mechanics.
3Not all rank 2 tensors can be constructed as the outer product of two vectors, but all rank 2 tensors can

be constructed from a linear combination of outer products of vectors.
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3.5 Tensor Symmetry

A tensor is described as symmetric if, for example Sab = Sba. A tensor is antisymmetric if
Aab = −Aba. The properties of symmetry and antisymmetry can be extended to higher-order
tensors. For instance, the rank-3 tensor U, with Uab

c = −U ba
c , is said to be antisymmetric in

its first and second indices. These properties are of the tensor itself, being preserved between
coordinate systems.

A type-(0,2) or type-(2,0) tensor can always be written as the sum of a symmetric tensor
and an antisymmetric tensor:

Tab =
1

2
(Tab + Tba) +

1

2
(Tab − Tba)

The first term is symmetric and denoted T(ab); the second is antisymmetric and denoted T[ab].
Extending this,

T(ab)c =
1

2
(Tabc + Tbac) T[abc] =

1

6
(Tabc − Tacb + Tbca − Tbac + Tcab − Tcba)

where the prefactors ensure that symmetrising an already-symmetric tensor does nothing.

3.6 Metric Tensor

g′cd =
∂xa

∂x′c
∂xb

∂x′d
gab

The metric’s components transform like those of a type-(0,2) tensor, g. If for a moment we
step back into the formal view that such tensors are maps from two copies of TP (M) to R,
we define the inner product between two vectors with components ua and va as the result of
mapping these vectors to R using g: the inner product is the scalar gabu

avb.
It was mentioned earlier that the dual vector space T ∗P (M) is the space of linear maps from

TP (M) to R. It turns out that there is an isomorphism between the two spaces, that is, for
every vector in TP (M) there is exactly one dual vector in T ∗P (M). The most useful way to

pair the two up is to define the dual vector va ≡ gabv
b . In this way any vector in TP is

assigned a dual vector in T ∗P by “lowering its index” using gab. The square-norm of the vector
is then vav

a, which is nice. On a Riemannian manifold, this is at least 0, and only equal to 0 if
all the va (and hence va) are 0. On a pseudo-Riemannian manifold, this is no longer the case
and the square-norm can be negative. The “length” of a vector is

|v| =
∣∣gabvavb∣∣1/2 = |vava|1/2 > 0

We extend the lowering ability of gab and allow it to create new objects out of any tensor with
an upstairs index, for example gadgbeT

ab
c = Tdec.

Consider the inverse of gab, written (g−1)ab:

(g−1)abgbc = δac

Transforming this, using the fact that δac is an isotropic tensor whose components are invariant
of coordinate system, we find that g−1 transforms as a type-(2,0) tensor. In the same way
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that we use the same letter v for va and va above, we will subsequently write (g−1)ab as gab for
convenience:

gabgbc = δac

Furthermore, this notation is consistent with the lowering property of gab:

gabgcdg
bd = gabδ

c
b = gac

Also, using the raising property and multiplying by gab:

gabv
b = va ⇒ gcagabv

b = gcava ⇒ vc = gcava

so gab has the ability to raise the indices of a dual vector to a vector.
We can now do all sorts of raising and lowering operations on tensors:

gabg
cdT bde = T c

a e

Note we are being very careful to keep the ordering of the indices clear, as for example the
quantity T ac = gabTbc is generally different to T a

c = gabTcb, unless Tab = Tba.

4 Vector & Tensor Calculus

Remember that a useful derivative of a tensor must also be a tensor.

4.1 Covariant Derivative

If we try to construct the derivative of a vector vb with respect to some (general) coordinate
xa, we obtain an object which is unfortunately not a tensor:

∂v′b

∂x′a
=
∂xc

∂x′a
∂

∂xc

(
∂x′b

∂xd
vd
)

=
∂xc

∂x′a
∂x′b

∂xd
∂vd

∂xc
+
∂xc

∂x′a
∂2x′b

∂xc∂xd
vd

The first term is exactly what we want, but the second term, due to the curvature of the
manifold is unwelcome. We define the covariant derivative as:

∇av
b =

∂vb

∂xa
+ Γbacv

c

where the coefficients Γbac (the connection coefficients) ensure this transforms as a tensor. We
can also define a contravariant derivative by raising the index on the operator:

∇avb = gac∇cv
b

The connection coefficients account for the fact that the tangent space changes from point to
point. To find what they are, we use the assumption that the covariant derivative does indeed
transform as a tensor, and substitute the definition above:

∇′av′b =
∂xc

∂x′a
∂x′b

∂xd
∇cv

d ⇒ Γ′baf =
∂x′b

∂xe
∂xc

∂x′a
∂xd

∂x′f
Γecd −

∂xc

∂x′a
∂xd

∂x′f
∂2x′b

∂xc∂xd

where the final term excludes the Γ coefficients from tensorhood. Any coefficients which satisfy
the above form a viable connection, but the Levi-Civita connection is the most natural. This
connection relies on six reasonable axioms:
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• For a scalar field φ, the covariant derivative is the same as the regular derivative:

∇aφ =
∂φ

∂xa

This seems reasonable because φ does not make reference to any basis vectors, which
change from place to place, so just the regular derivative will do.

• The covariant derivative is linear

• The covariant derivative commutes with contraction over indices

• The covariant derivative obeys the Leibniz differentiation rule, for example

∇a

(
T bcSde

)
=∇a

(
T bc
)
Sde + T bc∇a

(
Sde
)

• “Metric compatibility”: ∇agbc = 0 .

• The connection is “torsion-free”, that is, for any φ, ∇[a∇b]φ ≡ 1
2
(∇a∇bφ−∇b∇aφ) = 0

4.1.1 Covariant Derivative of a Dual Vector

Xav
a is a scalar, so using the Leibniz rule:

∇a

(
Xbv

b
)

=
∂(Xbv

b)

∂xa
⇒ ∇aXb =

∂Xb

∂xa
− ΓcabXc

Γ is symmetric in its lower indices. To show this, consider:

∇a∇bφ =∇a∂bφ = ∂a∂bφ− Γcab∂cφ ⇒ ∇[a∇b]φ = −Γc[ab]∂cφ

For this to be equal to 0 as postulated, Γ must be symmetric in its lower indices.

4.1.2 Covariant Derivative of a Rank 2 Tensor

All the operators involved are linear, so wlog we can consider the covariant derivative of a
tensor T ab = uavb. Using the Leibniz rule:

∇aT
bc =∇au

bvc + ub∇av
c = ∂au

bvc + Γbadu
dvc + ub∂av

c + ubΓcadv
d

= ∂a(u
bvc) + Γbadu

dvc + Γcadu
bvd

= ∂aT
bc + ΓbadT

dc + ΓcadT
bd

Similarly, we may derive:

∇aT
b
c = ∂aT

b
c + ΓbadT

d
c − ΓdacT

b
d ∇aTbc = ∂aTbc − ΓdabTdc − ΓdacTbd

For every upstairs index, the covariant derivative obtains a +Γ term, and for every downstairs
index the formula has a −Γ term. There is always only one sensible possibility for where to
put all the indices, so just get the signs right.
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4.1.3 The Levi-Civita Connection / Christoffel Symbols

Metric compatibility gives:
∂agbc − Γdabgbd − Γdabgcd = 0

Cyclically permuting the indices, and subtracting one from the other two using the symmetry
of Γ, we find

Γcab =
1

2
gcd(∂agcd + ∂bgad − ∂dgab)

To get the indices in the right place:

1. A factor of 1/2, a gab factor, then three ∂agbc terms, with two + and one −.

2. There is exactly one dummy index. With the three free indices in the Γ you are trying
to work out, this gives four indices in total.

3. The two upstairs indices of the gab factor can only be the upstairs index of the Γ and
the dummy index, as both the other indices are free and downstairs so they can’t be the
indices of the inverse metric, which are upstairs.

4. The three ∂� terms have three lower indices to choose from: the lower indices of the Γ, and
the dummy index. The terms with a + sign are those where the metric is differentiated
with respect to a free index of the Γ; the term with a − sign is that where the metric is
differentiated with respect to the dummy index.

For the special (but common) case where the metric is diagonal, the Christoffel symbols
simplify. For a 6= b 6= c and suspending the summation convention,

Γabc = 0 Γabb = − 1

2gaa
∂agbb Γaaa =

1

2gaa
∂agaa Γaab =

1

2gaa
∂bgaa

noting the minus sign in the second term.
The quantity Γaab: beginning from metric compatibility and multiplying by gbc, one finds:

Γbba = =
1

2
|g|−1∂a|g| = |g|−1/2∂a|g|1/2

where we have used M bc∂aMbc = Tr (M−1∂aM) = |M |−1∂a|M | for an invertible matrix M ; g
is the determinant of the matrix gab.

4.1.4 Divergence and Curl

The divergence of a vector field va is ∇av
a, which can be found to be:

∇av
a = |g|−1/2∂a

(
|g|1/2va

)
The familiar definition of the curl of a vector field doesn’t really work. Instead, define

the curl tensor of a dual vector field Xa as the tensor ∇aXb −∇bXa which turns out to be
independent of the connection. We also recover the familiar property that the curl of a gradient
of a scalar field is 0, as ∇a∇bφ−∇b∇aφ ≡ 0 axiomatically.

The Laplacian operator is ∇2 =∇a∇a =∇a

(
gab∇b

)
= gab∇a∇b:

∇2φ = |g|−1/2∂a
(
|g|1/2gab∂bφ

)
11



4.2 Intrinsic Derivative

The intrinsic derivative is the derivative of a tensor along some parametrised curve xa = xa(u).

Dva

Du
≡ dxb

du
∇bv

a =
dxb

du
(∂bv

a + Γabcv
c) ⇒ Dva

Du
=

dva

du
+

dxb

du
Γabcv

c

contracting the covariant derivative with the tangent vector dxb
/

du . Being a contraction, the
intrinsic derivative is itself a tensor, whereas dva/du by itself is not; what we would intuitively
want the derivative to be is not a tensor, so we need a connection term. The expression involves
only va(u), so there is no need for va to be defined off the path xa = xa(u) to calculate the
intrinsic derivative.

This derivative can also be calculated for higher-order tensors:

DT ab
Du

=
dxc

du
∇cT

a
b =

dT ab
du

+
dxc

du
ΓacdT

d
b −

dxc

du
ΓdcbT

a
d

Finally, any intrinsic derivative of the metric tensor is Dgab/Du =∇cgab dxc/du = 0

4.2.1 Parallel Transport

Suppose we have a vector va defined at a point, and a curve xa(u), and we wish to define a
vector field along that curve so that the vector has the same magnitude and “direction” at
all points along it. This is described as “parallel transporting” the vector, and is satisfied

by imposing Dva/Du = 0 . Again, we would intuitively expect it to be dva/du (the

components each staying the same along the path), but we need a connection term to account
for manifold curvature. Dva/Du = 0 is an ODE for the va, integration constants being specified
by knowing the values of the vector’s components at the starting point.

Dot products of parallel-transported vectors are preserved under parallel transport, as:

D(u · v)

Du
=

D

Du

(
gabu

avb
)

=
Dgab
Du

uavb + gab

(
Dua

Du
vb + ua

Dvb

Du

)
= 0

because the first term involves the intrinsic derivative of the metric and the second two involve
terms like Dua/Du which by supposition are 0.

4.2.2 Geodesics

Geodesics are curves defined by either:

• A curve along which the tangent vector parametrised by path length (ta = dxa/ds) is
parallel transported

• A curve of extremal distance between two points

Taking the first definition above, the defining equation becomes:

0 =
Dta

Ds
=

dxb

ds
∇bt

a =
dxb

ds

[
∂ta

∂xb
+ Γabct

c

]
=

dta

ds
+ Γabc

dxb

ds
tc =

d2xa

ds2
+ Γabc

dxb

ds

dxc

ds

12



ẍa + Γabcẋ
bẋc = 0

It can be seen that if the curve is not parametrised by s, but by some other parameter u such
that du/ds is constant (affine parameters), this constant would cancel and the same result
would be found.

The second definition leads to the same result, and also shows how non-affine parameters
are accounted for. The length of the curve is

∫ B
A

ds =
∫ uB
uA
|gabẋaẋb|1/2 du, where ẋa ≡ dxa/du .

Calling the integrand F = ds/du = ṡ and applying the Euler-Lagrange equation gives a related
form

∂F

∂xc
=

d

du

∂F

∂ẋc
⇒ ẍa + Γabcẋ

bẋc =
s̈

ṡ
ẋa

Thus if an affine parameter is used (giving s̈ = 0), the RHS is 0 and the same equation as
above is recovered.

Much of the above does not apply to null curves, for which s = 0 along the curve, so it
cannot be used as a parameter. In this case, we simply use whatever parameter u is available,
forming ta = dxa/du and setting Dta/Du = 0. This still yields a unique curve, a null geodesic.

The definition of a geodesic can also be derived from a Lagrangian. As we are here looking
to extremise path length (or, equally, path length squared), we have L = gabẋ

aẋb. Because L
does not explicitly depend on u, we can take the first integral to find that the quantity

ẋc
∂L
∂ẋc
− L = gacẋ

aẋc = L

is conserved along the path. Further, if L does not depend on some “ignorable” coordinate xi,
then the conjugate momentum ∂L/∂ẋi is also conserved along the curve.

4.3 Curvature

The Riemann curvature tensor R d
abc is defined by:

(∇a∇b −∇b∇a)vc = R d
abc vd

To work out its components, we first have:

∇a∇bvc =∇a

(
∂bvc − Γdbcvd

)
= ∂a

(
∂bvc − Γdbcvd

)
− Γeab

(
∂evc − Γdecvd

)
− Γeac

(
∂bve − Γdbevd

)
⇒ R d

abc vd = −∂a
(
Γdbcvd

)
+ ∂b

(
Γdacvd

)
− Γdac∂bvd + Γdbc∂avd + (ΓeacΓ

d
be − ΓebcΓ

d
ae)vd

= (−∂aΓdbc + ∂bΓ
d
ac + ΓeacΓ

d
be − ΓebcΓ

d
ae)vd

⇒ R d
abc = −∂aΓdbc + ∂bΓ

d
ac + ΓeacΓ

d
be − ΓebcΓ

d
ae

If a manifold is globally flat, ∃ coordinates in which gab takes a constant diagonal form, and
so Γ = 0 everywhere and R d

abc = 0. In local Cartesian coordinates on a general manifold (a
family of which always exists), gab takes a constant diagonal form only locally, the ∂agbc are
locally 0, so Γ = 0 locally, but ∂a∂bgcd 6= 0 so ∂Γ 6= 0.

Memory aids: there are two terms involving ∂Γ and two involving ΓΓ; in each term there
is a Γ with either Γ�

bc or Γ�
ac. Terms with Γ�

bc have −; those with Γ�
ac have +.

13



The Riemann tensor has several symmetries, many of which are easiest to derive in local
Cartesian coordinates in which Γ = 0. They are summarised by:

Rabcd = −Rbacd = −Rabdc = Rcdab Rabcd +Rbcad +Rcabd = 0

It turns out that these symmetries leave 1
12
N2(N + 1)(N − 1) independent components of the

tensor in N dimensions; = 20 for N = 4.
A useful property of R d

abc , also best derived in local Cartesians, is the Bianchi identity:

∇aR
e

bcd +∇bR
e

cad +∇cR
e

abd = 0 ⇒ ∇[aR
e

bc]d = 0 (Bianchi)

4.3.1 Ricci Tensor and Scalar

Contracting R d
abc once gives the Ricci tensor Rab ≡ R c

cab = Rba . It is possible for a

manifold to not be flat (R d
abc = 0), yet Rab = 0. Contracting again gives the Ricci scalar

R ≡ gabRab .

Contracting over the Bianchi identity over (be) and then (ad) gives:

∇a

(
Rab −

1

2
gabR

)
= 0

That is, the divergence of the Einstein tensor, Gab ≡ Rab − 1
2
gabR, is 0.

4.3.2 Consequences of Curvature

Parallel Transport around a Closed Curve. Parallel transport gives:

Dva

Du
= 0 ⇒ dva

du
= −Γabc

dxb

du
vc

Integrating the RHS around a closed loop will in general be non-zero giving a change in the
vector component; this can be done analytically in the limit of small curves. The ingredients
are, for a curve starting at the origin parametrised by u with u = 0 at the origin:

Γabc(u) = Γabc(0) + ∂dΓ
a
bc

∣∣∣∣
0

xd(u)

vc(u) = vc(0) + ∂ev
c

∣∣∣∣
0

xe(u) = vc(0)− Γcef (0)xe(u)vf (0)

Integrating the RHS to first order in xa then gives

∆va =
1

2
R a
bcd (0)vd(0)

∮
xb dxc

And so the amount by which a vector changes on being transported around a small closed loop
depends on the curvature of the manifold.
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Geodesic Deviation. Two infinitesimally-separated geodesics xa(u) and ya(u) have equa-
tions:

ẍa + Γabc(x)ẋbẋc = 0 ÿa + Γabc(y)ẏbẏc

Let ξ = x− y. By writing out D2ξa/Du2, and comparing with the difference of the two above
equations, we obtain:

D2ξa

Du2
−R a

dbc ẋ
bẋcξd = 0

If the manifold is flat, R = 0 and a Cartesian coordinate system exists so D2ξa/Du2 =
∂2ξa/∂u2 , so we get ∂2ξa/∂u2 = 0, as is the flat result. If the manifold is not flat, these will
diverge or converge, as meridians on the surface of the Earth.

5 Minkowski Spacetime

Minkowski spacetime is the manifold on which Special Relativity happens. It has metric

gµν = ηµν ≡ diag(1,−1,−1,−1)

Clearly the inverse metric, ηµν , has the same components. All the components are constant,
so all of the connection terms are 0 and most of the previous section can briefly be forgotten.
This also means that one can describe positions on the entire manifold using four Euclidean
coordinates (ct, x, y, z). If we lower the index of a vector vµ using ηµν , the time component will
stay the same and the spatial components will all be reversed.

For a 4-dimensional manifold, there are 6 degrees of freedom when converting from one
completely general initial coordinate system to a new one with a constant diagonal form. If
the initial metric (in S, say) is in fact ηµν , this still applies; we can transform to a new
coordinate system (S ′) where the new metric is also ηµν , and this transformation, (in this case
the Lorentz transformation) has 6 degrees of freedom:

g′µν = ηµν =
∂x′ρ

∂xµ
∂x′σ

∂xν
ηρσ = gµν and conversely ηµν =

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ

It can be shown that these constraints restrict the partial derivatives ∂x′µ/∂xν to be constants,
written Λµ

ν and given by:

[Λµ
ν ] =


γ −βγ
−βγ γ

1
1


for a transformation which is a linear boost along the x-axis. Thus ηµν = Λρ

µΛσ
νηρσ. Rear-

ranging this, the inverse Lorentz transformations are therefore:(
Λ−1

)
ρ
µ = ηρση

µνΛσ
ν

suggesting that maybe we should write (Λ−1)ρµ as Λ ρ
σ and be very careful about where we put

indices. The Λ do not form the components of a tensor; this is just a funky shorthand.
The magnitudes of vectors are preserved under Lorentz transformations:

|v′|2 = ηµνv
′µv′ν = ηµνΛ

µ
ρv
ρΛν

σv
σ = ηρσv

ρvσ = |v|2
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Because all the connection terms of Minkowski space are 0, the operators ∇a and D/Du
are here equal to ∂a and d/du respectively. We will often use the latters when talking about
dynamics in Minkowski space (such as velocity being the time derivative of position) where
there is no distinction, but when we do dynamics on more general manifolds, with non-zero con-
nections, these familiar operators will be replaced by the connection-inclusive ∇a and D/Du.

5.1 Dynamical 4-Vectors

Vectors in Minkowski space are often called 4-vectors.

5.1.1 Position x

x has components xµ = (x0, x1, x2, x3) = (ct, x, y, z) = (ct,x), where x is the 3D position
vector. The trajectory of a particle as it moves through space and time is a curve in Minkowski
space. For massive particles, these curves can be parametrised by the proper time τ , the time
recorded by a particle in its IRF F . From one moment to another in F , the particle does not
move by definition, so ds2 = c2 dτ 2 ⇒ ds = c dτ . The proper time is thus an affine parameter,
as the spacetime distance s along the path is linearly dependent on it.

5.1.2 Velocity u ≡ dx/dτ

u is a tangent to the curve the particle follows. For a massive particle, this vector points within
the light cone at each point on the curve, and is therefore timelike. As such, the magnitude of
the velocity vector is positive; it is also in fact positive for any metric:

|u|2 = gµνu
µuν = gµν

dxµ

dτ

dxν

dτ
=
gµν dxµ dxν

dτ 2 =

(
ds

dτ

)2

= c2

Thus |u| = c on any manifold, including Minkowski spacetime. Differentiating the components:

u =
d

dτ
(ct, x, y, z) =

dt

dτ

(
c,

dx

dt
,
dy

dt
,
dz

dt

)
=

dt

dτ
(c,u)

where u is the regular 3D velocity (dx/dt , dy/dt , dz/dt). The magnitude of this vector must
be c as shown above, so we have:

dt

dτ

√
c2 − u2 = c ⇒ dt

dτ
= γ

as before. Thus u = γ(c,u)
By using the Lorentz transformations u′µ = Λµ

νu
ν , one can derive the velocity transforma-

tion laws found earlier. The equality of the first component relates γu′ of the new frame to γu
of the old frame in terms of γv where v is the relative velocity of the frames. This can then be
used to deduce the transformed velocities in the x, y and z directions.

5.1.3 Momentum p ≡ mu

For massive particles p has components mu = (γmc, γmu), and so is also a timelike vector.
It can be shown that relativistic interacting particles do not conserve the 3-vector Σimiui but
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do conserve Σiγuimiui, so we identify p = γmu. Similarly, the total energy can be shown to
be E = γmc2, so we have:

p =

(
E

c
,p

)
The square magnitude of the 4-velocity is c2, so that of the 4-momentum is m2c2, and

E2 − p2c2 = m2c4

The LHS is called the energy-momentum invariant, as it is unchanged under a Lorentz trans-
formation (though E and p will of course individually change).

5.1.4 Acceleration a ≡ du/dτ

To perform the derivative and find its components in terms of a, we first need the important
formula:

dγ

dt
=

d

dt

(
1− u

2

c2

)−1/2

= −1

2
γ3−2u

c2
· du

dt
=
γ3

c2
u · a

Hence:

a =
du

dt
= γ

d

dτ
(γc, γu) =

(
γ4

c
u · a, γ

4

c2
(u · a)u+ γ2a

)
= γ2

(
γ2

c
u · a, γ

2

c2
(u · a)u+ a

)
a must be orthogonal to u, as:

ηµνu
µaν =

1

2

d

dτ
(ηµνu

µuν) =
1

2

d

dτ
c2 = 0

The length of a 4-vector is invariant under a Lorentz transformation. As such, we can find the
length of a by choosing the frame in which u = 0, that is, F : in this frame, a = (0,aF), and
so |a|2 = −a2

F . Therefore a is a spacelike vector.

5.1.5 Force f = ma

Force. The force 4-vector (or “fource” if you will), f , is given by ma, and thus is also spacelike
and orthogonal to u. Alternatively, one could define it by f = dp/dτ , in which case its
components would be found as:

f =
d

dτ

(
E

c
,p

)
= γ

d

dt

(
E

c
,p

)
= γ

(
f · u
c

,f

)
where f is the 3-force, and f · u = dE/dt .

5.2 Light

Momentum and energy are still conserved in relativistic interactions (provided one is careful
to include factors of γ), even those involving photons. As such we must still be able to give
photons 4-momentum to include their contributions. It is still given by p = (E/c,p), and still
has a magnitude of m2c2, but photons have m = 0 so their 4-momentum must be null and we
must have E2 − p2c2 = 0, as is familiar with light.
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The proper time τ cannot be used as a parameter for the paths photons travel along as
τ = 0 for the entire curve. We therefore cannot really define a 4-velocity u for a photon, as this
is defined in terms of a derivative with respect to τ , though we can define their p as above. It
can also be defined p = dx/dζ where ζ is any parameter for the null curve. It doesn’t matter
what the parameter is – the parameter does not affect the direction, only the magnitude, and
the magnitude is always 0.

5.2.1 Wavevector k ≡ p/~

As p is null, so must be k and we thus have:

k = (|k|,k) =

(
2π

λ
,k

)
As the 4-wavevector transforms like any 4-vector under a Lorentz transformation, we can use
the first component to rederive the Doppler Effect. If k is just in the x direction, we have:

2π

λ′
= γ

2π

λ
− γβ 2π

λ
= γ(1− β)

2π

λ
=

√
1− β
1 + β

2π

λ
⇒ f ′ =

√
1− β
1 + β

f (as before)

5.3 Maxwell’s Equations

Given that light was what got us into this mess in the first place, it is possible to express
Maxwell’s Equations (below) in a relativistic framework – that is, as tensor equations.

∇ ·E =
ρ

ε0
∇ ·B = 0 ∇×E = −Ḃ ∇×B = µ0J + µ0ε0Ė

5.3.1 The Faraday Tensor F

The Lorentz force, f = q(E +u×B), depends linearly on the velocity, and is proportional to
charge (a scalar), suggesting that the fource should too. We introduce the Faraday Tensor F,
so that the fource is given by

fµ = qF µ
ν u

ν ⇒ fµ = qFµν u
ν

For the fource and velocity to be orthogonal as shown earlier, F is required to be antisymmetric:

0 = fµu
µ = qFµνu

µuν =
1

2
q(Fµν + Fνµ)uµuν

In Minkowski space we found that the expression for the fource is

fµ = γ

(
f · u
c

,f

)
⇒ fµ =

(
γ
f iui
c
,−f j

)
where we allow Latin indices like i to run from 1 to 3, and note that when we are dealing with
Cartesian 3-vectors like f and u it doesn’t matter whether the indices are up or down. We
will denote their indices by symbols like f i to distinguish against indices of f , for instance.

18



Consider the first term, f0 = γf · u/c. If we substitute in the 3-vector expression for
the Lorentz force, we have γf · u/c = γqE · u/c = γqEiui/c. But the definition of F gives
f0 = qF0νu

ν = qγ(F00c+ F01u
1 + F02u

2 + F03u
3), so we have:

F0i = Ei/c

where we recall that F00 = 0 because of F’s antisymmetry.
Now we find the rest of the components Fij. We have fi = −γf i, and the full Lorentz force

law is f i = q(Ei + εijkujBk). By comparing with fi = qFiνu
ν , we have:

−γq(Ei + εijkujBk) = qγ( Fi0︸︷︷︸
−Ei/c

c+ Fiju
j)

Fij = −εijkBk

[Fµν ] =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0


Contracting with ηµν , we find:

[F µ
ν ] =


0 E1/c E2/c E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

 [F µν ] =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


From this final form, we can find out how electric and magnetic fields transform between

frames, as F ′µν = Λµ
ρΛ

ν
σF

ρσ, so [F ′µν ] =
[
Λµ

ρ

]
[F ρσ][Λν

σ], which is

[F ′µν ] =


0 −E1/c −γ(E2/c− βB3) −γ(E3/c+ βB2)

E1/c 0 −γ(B3 − βE2/c) γ(B2 + βE3/c)
γ(E2/c− βB3) γ(B3 − βE2/c) 0 −B1

γ(E3/c+ βB2) −γ(B2 + βE3/c) B1 0


which is simply the form of the Faraday tensor for different electric and magnetic fields:

E′ =

 E1

γ(E2 − vB3)
γ(E3 + vB2)

 B′ =

 B1

γ(B2 + vE3/c
2)

γ(B3 − vE2/c
2)


which gives the electric and magnetic fields as seen in different coordinate frames. As with the
Lorentz transformations of spacetime coordinates, we see that the coordinates become mixed
up with each other, however here we see that the x-directed components are unaffected, and it
is the y- and z-components that are shuffled about; also there are now some + signs woven in.

5.3.2 4-Current j

Consider a static charge density ρ as seen in S. In a frame S ′ moving relative to S at a speed
u, this charge density will appear to be greater by a factor of γ due to length contraction:
ρ′ = γρ. Also, in S ′, there will appear to be a current density J ′ = −ρ′u (the minus sign is
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there as the charge will appear to be going in the opposite direction to the velocity of the frame
itself, u). In other words, we have transformed between the 4-vectors (cρ,0) → (γcρ,−γρu).
Justified by comparison with a Lorentz transformation of coordinates (ct,0) → (γct,−γut),
we assert that jµ = (cρ,J) constitute the components of the current 4-vector.

The 3D continuity equation for charge is ∂ρ/∂t +∇ · J = 0. Considering jµ as a 4-vector,
we see that ∂µj

µ = ∂(ρc)/∂(ct) + ∂J i/∂x
i = ∂ρ/∂t +∇ · J = 0. Thus the equation ∂µj

µ = 0
encodes conservation of charge.

5.3.3 Maxwell’s Equations in Tensor Form

Consider the derivative ∂νF
ν0. The first term is 0 as F 00 = 0, so:

∂νF
ν0 = ∂iF

i0 =
1

c
∇ ·E =

cρ

ε0c2
= µ0cρ = µ0j

0

Inspired by this, we might suggest that ∂νF
νσ = µ0j

σ; let’s check this for σ = 1:

∂νF
ν1 = −1

c

∂E1

∂(ct)
+
∂B3

∂x2
− ∂B2

∂x3
= − 1

c2

∂E1

∂t
+ (∇×B)1 = µ0J1

where the last equality comes from Maxwell’s 4th equation; one can easily check that the same
results are found with σ = 2, 3. We have thus rewritten Maxwell’s 1st and 4th equations as
∂νF

νσ = µ0j
σ. Furthermore, taking the divergence of this equation gives:

0 = ∂σ∂νF
νσ = µ0∂σj

σ

so charge conservation is built-in. The other two equations can be written as

∂[νFσρ] = 0 or ∂νFσρ + ∂σFρν + ∂ρFνσ = 0

where the two are equivalent because Fνσ is antisymmetric. This equation has lots of symmetry:
choosing (ν, σ, ρ) = (0, 1, 2) is clearly the same as choosing (1, 2, 0) or (1, 0, 2). The independent
choices are then (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3). The latter is the only one which does not
differentiate with respect to time, and so as we might expect it leads to Maxwell’s 2nd law
about the divergence of B:

0 = ∂[1F23] ∝ ∂1F23 + ∂2F31 + ∂3F12 = −∂B1

∂x1
− ∂B2

∂x2
− ∂B3

∂x3

and so ∇ ·B = 0. Choosing (0, 1, 2) next, we find:

0 = ∂[0F12] ∝ ∂0F12 + ∂1F20 + ∂2F01 = − ∂B3

∂(ct)
− 1

c

∂E2

∂x1
+

1

c

∂E1

∂x2

which is 1/c times the 3rd component of ∇×E = −Ḃ; the remaining two possibilities simply
give the other two components of this equation.

5.3.4 4-vector potential A

If we take Fνσ = ∂νAσ − ∂σAν , the cyclic property ∂[ρFνσ ] is automatically satisfied by the
symmetry of mixed partial derivatives, as is F’s antisymmetry. However, the addition of a
gradient of a scalar ∂νψ to Aν would not affect this Fνσ if it is derived from Aν in this way, so
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there is some some “gauge freedom” in defining Aν . This is usually fixed by using the Lorenz
gauge ∂νA

ν = 0, which is conveniently Lorentz invariant. We can then rewrite the “sourced”
Maxwell equation ∂νF

νσ = µ0j
σ in terms of the 4-vector potential. Lowering the indices of

F νσ,
∂νF

νσ = ∂νη
ναησβFαβ = ηναησβ(∂ν∂αAβ − ∂ν∂βAα) = ∂ν∂

νAσ − ∂β ∂νAν︸ ︷︷ ︸
0

if we use Lorenz gauge. We now write ∂ν∂
ν = �, where the � symbol is the the d’Alembertian,

or the Laplacian in Minkowski space, given by

� =
1

c2

∂2

∂t2
−∇2

where ∇2 is the 3D Laplacian. Anyway, this gives us ∂νF
νσ = �Aσ = µ0j

σ. In regions (or
frames) where there is no current density, we have �Aσ = 0, which is a wave equation in Aσ

for waves travelling at c.
The components of Aµ correspond to regular 3D potentials. For example, F12 = ∂1A2−∂2A1,

so −B3 = ∂1A2 − ∂2A1 = (∇ ×A)3. Similarly, F01 = ∂0A1 − ∂1A0, so E1/c = 1
c
∂A1/∂t −

∂A0/∂x ; for the rest of the components we similarly find E = −∇φ + 1
c
∂A/∂t . These are

consistent with the identification:

Aν = (φ/c,−A) ⇒ Aν = (φ/c,A)

where A is the regular 3-vector potential.

5.4 Beyond Minkowski Space

Minkowski space has a constant metric, so all the connection terms are all 0 everywhere,
so R d

abc = Rab = R = 0: Minkowski space is flat. In this section we discuss some of the
modifications that would need to be made to look at things in non-Minkowski spacetimes.

Consider a free particle. In an inertial frame, this free particle by definition has constant
velocity u, and hence constant γ. As such, if we parametrise by τ , the particle’s (proper) time,
we find:

duµ

dτ
=

dt

dτ

duµ

dt
= 0

as the components ui = γu (as well as u0 = γc) do not change with t for a free particle in an
inertial frame. The above is not a tensor equation; in curved spacetime it needs to be modified
to:

Duµ

Dτ
= 0

which is a tensor equation. But uµ is the tangent vector to the curve that the free particle is
travelling on, and so it must travel along a geodesic in curved spacetime.

For photons, p = dx/dζ is a tangent vector to the path, and if the photon is “free”, then
we generalise to Dpµ/Dζ = 0 and the photon also travels along a geodesic.

In a similar way to converting duµ/dτ to Duµ/Dτ , similar modifications must be made to
all equations used in this section involving d or ∂:

d/dζ → D/Dζ ∂µ →∇µ

for any parameters ζ or coordinates µ. For instance, the Maxwell tensor equations become:

∇νF
νσ = µ0j

σ ∇[νFσρ] = 0

with Fνσ =∇νAσ −∇σAν .
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6 Gravitational Field Equations

6.1 Weak Field Limit

For weak, static gravitational fields, we expect the metric to look like

gµν = ηµν + hµν

where each |hµν | � 1, and ∂0gµν = ∂0hµν = 0. We also assume that any test masses are moving
at much less than c = dct/dt = dx0/dt :∣∣∣∣dxidt

∣∣∣∣� dx0

dt
⇒

∣∣ẋi∣∣� ẋ0

where the dots are with respect to τ , not t (we have multiplied through by dt/dτ ). The
geodesic equation for a massive particle gives

0 = ẍµ + Γµρσẋ
ρẋσ ≈ ẍµ + Γµ00ẋ

0ẋ0 = ẍµ + Γµ00

(
dct

dτ

)2

The connection terms are

Γµ00 =
1

2
gµν(∂0gν0 + ∂0g0ν − ∂νg00) = −1

2
gµν∂νh00 ≈ −

1

2
ηµν∂νh00 = −1

2
ηµi∂ih00

=

{
0 µ = 0
1
2
∂µh00 µ = i

Thus the geodesic equations become

0 = ẍ0 0 = ẍi +
c2

2
∂ih00

(
dt

dτ

)2

The first says that the quantity dt/dτ is constant; the second gives on multiplying through by
this quantity’s inverse

d2x

dt2
= −c

2

2
∇h00

We therefore identify h00 = 2Φ/c2, and thus g00 = 1 + 2Φ/c2.

6.2 Energy-Momentum Tensor T µν

6.2.1 Dust

For an ensemble of particles not moving relative to each other (“dust”), the energy density is
ρ0c

2 = n0mc
2 in the rest frame, and (γn0)(γmc2) = γ2ρ0c

2 in a relatively moving frame. If
we define T µν = ρ0u

µuν , where u is the 4-velocity of the dust particles, then T 00 is the energy
density even after a Lorentz transformation, where u0 = c becomes u0 = γc. As ρ0, the density
in the rest frame, is a scalar field, T µν is a symmetric tensor field.

Consider the frame in which the dust is moving at u, so uµ = γ(c,u). In this frame, the
components T 0i are given by

T 0i = γ2ρ0cu
i = c (γn0)(γmui)︸ ︷︷ ︸

momentum density

= (γn0)(γmc2︸ ︷︷ ︸
energy density

ui)/c
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T 0i is thus as a momentum density/an energy density flux. Finally, T ij is given by

T ij = γ2ρ0u
iuj = (γn0)(γmui)︸ ︷︷ ︸

i-momentum density

uj

so T ij is identified as i-momentum flux in the j-direction, or vice versa.

6.2.2 Ideal Fluids

For ideal fluids, ∃ a frame for which T 0i = 0 (no energy flow/conduction) and T ij ∝ δij

(isotropic pressure). In such a frame, T ij = diag(ρ0c
2, p0, p0, p0), where p0 is the pressure in

the rest frame, a scalar field. More generally,

T µν =
(
ρ0 +

p0

c2

)
uµuν − p0g

µν

which reduces to the diagonal form in the rest frame and the limit of Minkowski space. It is
common for ρ0c

2 � p0.

6.2.3 Conservation of Energy-Momentum

Conservation of energy and momentum is written ∇µT
µν = 0. In local inertial coordinates,

∂

∂ct
[energy density]︸ ︷︷ ︸

T 00

+∇ · [energy density× u]/c︸ ︷︷ ︸
T 0i

= 0 (cons. E/c)

∂

∂ct
(c[i-momentum density])︸ ︷︷ ︸

T 0i

+∇ · [i-momentum density× u]︸ ︷︷ ︸
T ij

= 0 (cons. pi)

Applying ∇µT
µν to the energy-momentum tensor of an ideal fluid recovers the continuity and

Euler equations of fluid mechanics.

6.3 Einstein Field Equations

If small masses/pressures are involved, we have approximately

g00 = 1 +
2Φ

c2
T00 = ρ0c

2 ∇2Φ = 4πGρ0

⇒∇2g00 =
8πG

c2
ρ0 =

8πG

c4
T00

∇2g00 is (vaguely speaking) a measure of the manifold’s curvature, so we expect an equation
of the form Kµν = Tµν where Kµν has something to do with the curvature, is symmetric, and
divergenceless (as ∇µTµν = 0). The Einstein tensor, plus an arbitrary multiple of the metric,
satisfies all these requirements, so we expect

Gµν + Λgµν ≡ Rµν −
1

2
gµνR + Λgµν = −κTµν

for some κ which we derive below. Λ has been measured to be around (3.04Gpc)−2, so will
only be relevant on large scales.
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For negligible pressures, T00 = ρ0c
2 and T ≡ gµνTµν = ρ0c

2. Neglecting Λ, and taking the
trace of the above equation, using gµνgµν = δµµ = 4, we find −R = −κρ0c

2. Substituting back
and focusing on the 00-component,

R00 −
κ

2
ρ0c

2 = −κρ0c
2 ⇒ R00 = −κ

2
ρ0c

2

This component of the curvature is given in the stationary weak-field limit by

R00 ≡ R c
c00 = −−∂cΓc00 +∂0Γcc0 +Γec0Γc0e−Γe00Γcce ≈ −∂cΓc00 = −∂iΓi00 = −1

2
∇2h00 = − 1

c2
∇2Φ

Thus

∇2Φ =
κ

2
c4ρ0 = 4πGρ0 ⇒ κ =

8πG

c4

So the EFE is

Gµν + Λgµν ≡ Rµν −
1

2
gµνR + Λgµν = −8πG

c4
Tµν

There is an equivalent formulation with Rµν in terms of T µν and T rather than the other way
around. Tracing,

−R + 4Λ = −8πG

c4
T ⇒ Rµν = −8πG

c4
Tµν +

1

2

(
8πG

c4
T + 4Λ

)
gµν − Λgµν

= −8πG

c4

(
Tµν −

1

2
gµνT

)
+ Λgµν

7 The Schwarzschild Solution

The Schwarzschild solution is a vacuum solution of EFE, that is, of Gµν = 0 and thus Rµν = 0.
It is the most general vacuum solution which is static and spherically symmetric.

ds2 = c2

(
1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1

dr2 − r2 dΩ2

µ =
GM

c2
dΩ2 = dθ2 + sin2 θ dφ2

• This is only the metric outside the mass – within the mass, Gµν 6= 0 so the Schwarzschild
solution is invalid and a different solution is needed instead

• It is complicated to define distances from the origin, so the r coordinate has a careful
interpretation: surfaces of constant t and r are spheres of area 4πr2

• As r →∞, the coordinates regain their usual interpretations and the metric tends to ηµν

• There appear to be two singularities to the metric:

– r = rs ≡ 2µ: This is not a true singularity, only an illusory coordinate singularity –
it can be removed by a different choice of coordinates.

– r = 0: This is a genuine singularity and the spacetime sorta breaks here.

Singularity of a point can be deduced by considering a coordinate-independent quantity,
such as RµνρσR

µνρσ. This is proportional to r−6, so r = 2µ is actually fine.
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7.1 Schwarzschild Orbits

The paths taken by particles around spherically symmetric masses are geodesics of the Schwarz-
schild metric, and thus extremes of an action with Lagrangian

L = gµν ẋ
µẋν = c2

(
1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θφ̇2

)
The overdots are with respect to ζ, which represents either proper time τ if we are dealing
with a massive particle, or some other parameter if with a massless particle. As two of the
coordinates θ and φ have different dimensions to r, we no longer bother to use ct as a coordinate
and just write x0 = t.

In addition, this Lagrangian is independent of the parameter and so is a constant. For a
massive particle, parametrised by τ , L = |u|2 = c2. For a massless particle, their motion in
the manifold is along the light cone and they travel along null paths, so L = |p|2 = 0.

e− L{θ}:
2r2 sin θ cos θφ̇2 = 2

d

dζ

(
r2θ̇
)

which is solved by θ = π/2.
e− L{φ}:

0 =
d

dζ

(
2r2 sin2 θφ̇

)
with θ = π/2, this says that r2φ̇ is a constant, h, familiar as angular momentum per mass.

e− L{t}:

0 =
d

dζ

[
c2

(
1− 2µ

r

)
ṫ

]
so (1− 2µ/r)ṫ is a constant, k, which turns out to be related to the particle’s energy.

Rather than using the e−L{r}, it turns out to be easier to use the first integral L = {c2, 0}:

L = c2

(
1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2φ̇2

= c2

(
1− 2µ

r

)−1

k2 −
(

1− 2µ

r

)−1

ṙ2 − h2

r2(
1− 2µ

r

)
L = c2k2 − ṙ2 − h2

r2

(
1− 2µ

r

)
1

2
(c2k2 − L) =

1

2
ṙ2 − µ

r
L+

h2

2r2

(
1− 2µ

r

)
We thus have a sort of energy equation (though recall that r and ṙ only correspond to radial
distance and its time derivative).

7.1.1 Massive Particles: L = c2

1

2
ṙ2 − GM

r
+

h2

2r2

(
1− 2µ

r

)
=

1

2
c2(k2 − 1) Veff(r) = −GM

r
+

h2

2r2

(
1− 2µ

r

)
like the Newtonian effective potential, but with a collapsing centrifugal barrier. The form of
the effective potential depends on the ratio h̄ ≡ h/µc as shown in Figure 3.
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Figure 3 | Form of Veff for different values of h̄.

Setting dVeff/dr = 0 gives two roots, at

r

µ
=
h̄2

2

(
1±

√
1− 12

h̄2

)

from which we see that

• h̄ <
√

12: no orbits exist, Veff is monotonically positive, and everything falls in.

• h̄ =
√

12: one semi-stable orbit at r = 6µ, the innermost stable circular orbit or ISCO.

• h̄ >
√

12: two turning points, one on either side of r = 6µ. Using d2Veff/dr2 , we find
that the inner root is unstable and the outer root stable.

• h̄→∞: stable root tends to ∞; unstable root tends to r = 3µ.

7.1.2 Massless Particles: L = 0

1

2
ṙ2 +

h2

2r2

(
1− 2µ

r

)
=

1

2
c2k2 Veff(r) =

h2

2r2

(
1− 2µ

r

)
The form of Veff does not depend on h: there is a single unstable orbit at r = 3µ, where

Veff = h2/54µ2. If c2k2/2 is less than this, then the particle can never reach the maximum (ṙ2

would be negative here).
The impact parameter of an orbit can be derived by converting the energy equation into

an orbit-shape equation by writing(
dr

dφ

)2

=

(
ṙ

φ̇

)2

=
r4

h2
ṙ2 =

r4

h2

[
c2k2 − h2

r2

(
1− 2µ

r

)]
= r2

[
c2k2

h2
r2 − 1 +

2µ

r

]
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where we have substituted ṙ2 from the energy equation. As r →∞, we expect the path to be
a straight line, with impact parameter b. This line is described by

r =
b

sinφ
⇒

(
dr

dφ

)2

=

(
− b

sin2 φ
cosφ

)2

=
r4

b2

(
1− b2

r2

)
= r2

(
r2

b2
− 1

)
and so from the large-r limit of the orbit equation above we can identify b = h/ck. As such, if
light passes with an impact parameter of less than

√
27µ, it will be captured.

7.1.3 Energy

Working first more generally than the Schwarzschild metric, thinking of any static (not neces-
sarily spherically symmetric) metric with

ds2 = g00 dt2 + gij dxi dxj ⇒ L = g00ṫ
2 + gijẋ

iẋj

Taking e− L{t} gives:
d

dζ

(
2g00ṫ

)
= 0 ⇒ g00ṫ = kc2

where we have chosen the arbitrary constant to be consistent with what we had above for the
Schwarzschild metric.

The four-velocity has square-magnitude gµνu
µuν = c2 as before. Consider a stationary

observer. It will observe its own three-velocity to be 0, that is ui = 0. As for u0, we have

c2 = gµνu
µuν = g00

(
u0
)2 ⇒ uµ =

(
c
√
g00

,0

)
Now the energy E of a particle (as observed by some observer at the same point) which has
momentum p is given by E = gµνu

µpν , a quite confusing expression relating the energy of
the particle, the four-velocity of the observer and the four-momentum of the particle. This
is because, in local inertial coordinates (gµν = ηµν) in which the observer is at rest (uµ =
(c,0)), the component p0 = E/c, so gµνu

µpν = η00c(E/c) = E. Back in general (non-inertial)
coordinates in which the observer is at rest, we then find

E = gµνu
µpν = g0νu

0pν = g00u
0p0 =

√
g00cp

0

from the point of view of this observer. For a massive particle, p0 = mẋ0 = mṫ where
differentiation is with respect to τ ; for a massless particle p0 = ẋ0 = ṫ with respect to some ζ.
For the massive case,

E =
√
g00mcṫ =

kmc3

√
g00

and the massless case is the same expression but with m = 1 (not to say that massless particles
have m = 1; the differentiation was with respect to a different variable ζ 6= τ ). This is the sum
of all the particle’s energy: rest-mass, kinetic, and potential. For the Schwarzschild metric,

E =

{
kmc2(1− 2µ/r)−1/2 massive

kc2(1− 2µ/r)−1/2 massless
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7.1.4 Gravitational Redshift

For a photon, E = hν, where E and ν are the values observed by the same observer at a given
point. Consider a photon emitted from a certain point A with frequency νA as observed by an
observer at A, received at B with νB as observed by an observer at B, where both observers
are stationary relative to the mass. The ratio of the two frequencies is given by

νB
νA

=
EB
EA

=

√
g00(A)

g00(B)

which for the Schwarzschild case gives

νB
νA

=

√
1− 2µ/rA
1− 2µ/rB

If we are observing at rB =∞ and recall that 1 + z = λ/λ0 = νA/νB, we have

1 + z =
1√

1− 2µ/rA

Which →∞ as rA → 2µ. . .

7.2 Schwarzschild Black Holes

For r < rs = 2µ, g00 < 0, and so any vector pointing along the time direction (const, r, θ, φ)
becomes spacelike; conversely spatial basis vectors become timelike. A particle’s worldline has
to be timelike (otherwise it travels faster than the speed of light), so a particle must move in
space4 and cannot stay still.

Henceforth we restrict ourselves to radial motion, setting dΩ = 0, effectively taking a slice
through the manifold in the t− r plane. Light cones are bounded by null geodesics, so to find
out how causality works here we need to find these. We have

0 = ds2 = c2

(
1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1

dr2 ⇒ dct

dr
= ±

(
1− 2µ

r

)−1

the solutions of which are

ct = ±
(
r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣)+ const.

related to each other by time reversal t→ −t. Note that as t→∞, r → ±ct as in Minkowski
(the linear term dominates the logarithmic one), corresponding to the paths of ingoing (−) and
outgoing (+) massless particles. The null geodesics are plotted in Figure 4 below.

t refers to the time that an observer at ∞ experiences. We see that infalling (−) particles
will reach r = 2µ only at infinite t, so on watching something fall in, it will fall apparently
slower and slower (appearing redder and redder). However, from the particle’s point of view,

4It may also move in time, though this is not essential. This is like how in normal regions of spacetime
particles must move in time, and may also move in space (so long as they don’t move too fast)
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Figure 4 | Null radial geodesics in the Schwarzschild metric. Null radial geodesics bound
particles’ lightcones. The null geodesics with the + sign are plotted in red; those with −
are in blue. Arrows indicate the direction of increasing ζ along the path. They both tend
to ct = ±r at large r.

it will pass through the surface r = rs in a finite amount of time (from this perpective, τ ).
Using the orbit equation with h = 0 (radial), and for the simple case k = 1,

1

2
ṙ2 =

GM

r
⇒ ṙ =

dr

dτ
= −

√
2GM

r
= −

√
2µc2

r

Setting r(τ 0) = r0, we integrate to obtain

τ − τ 0 = −
∫ r

r0

√
r

2µc2
dr = − 2

3
√

2µc2

(
r3/2 − r3/2

0

)
so if we set r = rs = 2µ, the τ taken between being at rs and r0 is finite. However, the t taken
(as observed at infinity) is infinite:

dr

dt
=
ṙ

ṫ
= −

√
2µc2

r

(
1− 2µ

r

)
Integrating to

t−t0 =

∫ r

r0

√
r

2µc2

dr

1− 2µ
r

= −2µ

c

∫ r/2µ

r0/2µ

x3/2

x− 1
dx = −2µ

c

[
2

3

(
x3/2 + 3x1/2

)
+ ln

∣∣∣∣x1/2 − 1

x1/2 + 1

∣∣∣∣]r/2µ
r0/2µ

where the last step can be done by substituting x = u2 and doing partial fractions at it. We
see that letting r → 2µ from above gives a divergence, so the body takes an infinite amount of
t to reach the singularity.

7.2.1 Within the Schwarzschild Radius

The derivative of time with respect to the geodesic parameter (whether τ or ζ) is ṫ = k(1 −
2µ/r)−1, so for r < 2µ, ṫ < 0. Infalling (−) observers, which have dr/dt > 0 as shown in Figure
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4, thus have dr/dτ < 0. Hence the path travelled by them is in the direction of negative r and
negative t: if an external observer and an internal observer could communicate (which they
can’t), they would see each other moving backwards in time.

Recall that A can only affect B if they are connected by a timelike or null curve; otherwise A
would be doing something that moves faster than light. Whereas timelike curves are normally
more directed along the time axis than the spatial axes, here the reverse is true: the lightcones
are more directed towards and away from the singularity, than along the time axis. For particle
that has fallen through r = rs, it can only affect things that have a smaller r than it, even
travelling at the speed of light. Conversely the only things that can affect it are at a larger r
than it: the past lightcone within r < rs is pointed outwards, in the direction of increasing r.

7.2.2 Eddington-Finkelstein Coordinates

Much of the difficulty here comes from t. Infalling photons follow ingoing geodesics

ct = −
(
r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣)+ const.

so we define a new coordinate t′ by

ct′ ≡ ct+ 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣
and so infalling photons follow the paths ct′ = −r+const. Now c dt′ = c dt + (r/2µ− 1)−1 dr,
so substituting into the Schwarzschild line element we have

ds2 = c2

(
1− 2µ

r

)[
dt′ − 1

c

(
r

2µ
− 1

)−1

dr

]2

−
(

1− 2µ

r

)−1

dr2 − r2 dΩ2

= c2

(
1− 2µ

r

)
dt′

2 − 4µc

r
dt′ dr −

(
1 +

2µ

r

)
dr2 − r2 dΩ2

from which we see that there is no true singularity at r = 2µ, thought the true singularity at
r = 0 is still apparent. This metric is also non-diagonal.

One can also construct outgoing Eddington-Finkelstein coordinates:

ct∗ = ct− 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣
so that outgoing photons travel along ct∗ = r+const. The line element then becomes

ds2 = c2

(
1− 2µ

r

)
dt∗2 +

4µc

r
dt∗ dr −

(
1 +

2µ

r

)
dr2 − r2 dΩ2

7.2.3 Gravitational Collapse

Consider a cloud of dust contracting to form a black hole. Assume the dust has no pressure and
so there are no forces at play other than gravity. A particle on the edge of the cloud experiences
a Schwarzschild spacetime, as the rest of the star appears spherically symmetric. The star may
have r > 2µ to start with, but the spacetime does not change according to Birkhoff’s theorem.
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Suppose the particle emits a light ray at coordinates (tE, rE) which is received by a station-
ary observer (tR, rR) where rR is constant. We wish to know tR as a function of rE. Both of
these points are on the outgoing null geodesic traversed by the light ray, so

ctR−rR − 2µ ln

∣∣∣∣rR2µ
− 1

∣∣∣∣︸ ︷︷ ︸
const.

= ctE − rE − 2µ ln

∣∣∣∣rE2µ
− 1

∣∣∣∣
Now ctE and rE are related by that complicated expression from earlier with the ln

√
x−1√
x+1

in it.
As r → 2µ, only this ln term will be dominant, so we have

ctE = 2µ ln

(√
rE/2µ+ 1√
rE/2µ− 1

)

which on substitution into the above gives

ctR + const. ≈ 2µ ln

(√
rE/2µ+ 1√
rE/2µ− 1

)
− 2µ ln

(
rE
2µ
− 1

)

= 2µ ln

√rE/2µ+ 1√
rE/2µ− 1

1(√
rE/2µ+ 1

)(√
rE/2µ− 1

)


= −4µ ln

(√
rE
2µ
− 1

)
≈ −4µ ln

(
rE
2µ
− 1

)
where the final approximation comes from I have no idea where. Anyway this can be rearranged
to

rE = 2µ+ const.× e−ctR/4µ

giving an exponentially decaying distance between the particle and the Schwarzschild radius,
with time constant 4µ/c.

We can also deduce the redshift of the light emitted, as observed by a stationary receiver.
You might think that we can just use the formula from earlier, but that assumed that the
emitter and receiver were stationary with respect to the mass; here the emitter is moving
towards the black hole and the receiver is stationary, so there will be Doppler redshift as well
as gravitational redshift. As before, E = gµνu

µpν , and for the emitter, relative to the mass.
Supposing again that k = 1, we have

u0
E = ṫ =

(
1− 2µ

r

)−1

u1
E = ṙ ≡ dr

dτ
= −

√
2µc2

r

and u2
E = θ̇ = u3

E = φ̇ = 0; this four-velocity is also normalised to gµνu
µuν = c2.

We now require the four-momentum of the photon as a function of r. This will be pµ =
ẋµ = (ṫ, ṙ, 0, 0) where differentiation is now with respect to some general affine parameter ζ.
We have ṫ = k(1 − 2µ/r)−1 (where this k 6= 1 is that of the photon, not the dust particle).
From the orbit equation for a massless particle with h = 0, we find simply ṙ = ck. Thus

pµ = k

((
1− 2µ

r

)−1

, c, 0, 0

)
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which can be shown to be normalised gµνp
µpν = 0. The energy of the emitted photon is then

given by

EE = gµνu
µ
Ep

ν = c2

(
1− 2µ

r

)(
1− 2µ

r

)−1

k

(
1− 2µ

r

)−1

−
(

1− 2µ

r

)−1
[
−
√

2µc2

r

]
kc

= kc2

(
1− 2µ

r

)−1
[

1 +

√
2µ

r

]
= kc2

(
1−

√
2µ

r

)−1

evaluated at rE. The energy of the received photon is then ER = gµνu
µ
Rp

ν . Being stationary5,

uµR =

((
1− 2µ

r

)−1/2

, 0, 0, 0

)
which has simply been deduced by normalisation. We then have:

ER = gµνu
µ
Rp

ν = c2

(
1− 2µ

r

)(
1− 2µ

r

)−1/2

k

(
1− 2µ

r

)−1

= kc2 = kc2

(
1− 2µ

r

)−1/2

evaluated at rR.
The frequencies are simply the energies divided by Planck’s constant, so the ratio of fre-

quencies is the ratio of energies. Thus

1 + z =
νE
νR

=
EE
ER

=

(
1−

√
2µ/rE

)−1

(1− 2µ/rR)−1/2
→
(

1−
√

2µ

rE

)−1

as rR →∞.

7.3 Experimental Tests of General Relativity

7.3.1 Precession

Recall that for a massive particle

1

2
ṙ2 − GM

r
+

h2

2r2

(
1− 2µ

r

)
=

1

2
c2(k2 − 1)

Taking interest in the orbit shape, we substitute

ṙ =
dr

dφ
φ̇ =

h

r2

dr

dφ
= −hdu

dφ
(u=1/r)

Substituting this, changing coordinates to u and dividing through by h2 gives

1

2

(
du

dφ

)2

− GM

h2
u+

1

2
u2(1− 2µu) =

c2(k2 − 1)

2h2

5This four-velocity appears to contrast with the above where ṫ = k(1−2µ/r)−1, but that was in fact derived
from the Lagrangian procedure, so is only true along geodesics. The path of the receiver is not a geodesic
for finite rR, as the receiver is not in freefall – otherwise it would be falling! It must have rocket boosters or
something to prevent it from falling towards the mass.
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Differentiating and dividing through by du/dφ :

d2u

dφ2
− GM

h2
+ u− 3µu2 = 0

which is the same as the Newtonian equation except for the 3µu2 term. In terms of the
dimensionless U ≡ uh2/GM = r0u, we multiply through by r0:

d2U

dφ2
− 1 + U = 3

GM

c2

U2

r0

= 3

(
GM

hc

)2

︸ ︷︷ ︸
α

U2

This entire equation is dimensionless and α is typically small – for the orbit of Mercury α ∼
10−7. Thus seek an solution U(φ) = U0(φ) + αU1(φ) accurate to first order in α, where
U0(φ) = 1 + e cosφ is the solution with α = 0. Substituting this form of U(φ):

α
d2U1

dφ2
+ αU1 = α(1 + e cosφ)2 ⇒ U ′′1 + U1 = 1 +

e2

2
+ 2e cosφ+

e2

2
cos 2φ

⇒ U1(φ) = 1 +
e2

2
+ eφ sinφ− e2

6
cos 2φ

≈ eφ sinφ

where we keep only the non-periodic term as the others will be eternally small whereas this
will eventually become decently large. Thus

U(φ) ≈ 1 + e cosφ+ eαφ sinφ ≈ 1 + e
[
cos(αφ) cosφ+ sin(αφ) sinφ−O(αφ)2

]
= 1 + e cos ((1− α)φ)

φ thus needs to increase by more than 2π (in fact 2π/(1−α)) for the cosand to be 0 again and
the orbit to reach another perihelion. This is more than expected by an amount

2π

1− α
− 2π ≈ 2πα = 6π

(
GM

hc

)2

For Mercury, this matches the discrepancy observed between Newtonian gravity (including
Newtonian interactions with other planets) and what is observed.

7.3.2 Gravitational Lensing

For a massless particle we have instead

1

2
ṙ2 +

h2

2r2

(
1− 2µ

r

)
=

1

2
c2k2

1

2

(
du

dφ

)2

+
1

2
u2(1− 2µu) =

c2k2

2h2

d2u

dφ2
+ u = 3µu2 =

3GM

c2
u2
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The Classical approximation, with µ ≈ 0, has the solution bu = sinφ, where b is the impact
parameter; this is expected to be the asymptotic solution as φ→ π where the ray is assumed
to come from. We multiply through by b and substitute the dimensionless U = bu:

d2U

dφ2
+ U =

3GM

c2b︸ ︷︷ ︸
β

U2

Writing U(φ) = sinφ+ βU1(φ) and working first order to β, we find

β
d2U1

dφ2
+ βU1 = β sin2 φ ⇒ U ′′1 + U1 =

1

2
− 1

2
cos 2φ

⇒ U1(φ) = A sinφ+B cosφ+
1

2
+

1

6
cos 2φ

=
2

3
cosφ+

1

2
+

1

6
cos 2φ

The constants are chosen to ensure that, going back in time to φ → π, asymptotically U =
sinφ, meaning that B = 2/3 (so that U1(π) = 0) and A = 0 (otherwise U would tend to
(1 + βA) sinφ). We finally have

U(φ) ≈ sinφ+ β

(
2

3
cosφ+

1

2
+

1

6
cos 2φ

)
U → 0 as φ → π as with β = 0, but due to the relativistic perturbation there is now another
(small, negative) angle−∆φ at which this is true. On substitution and approximating cos ∆φ ≈
1 and sin ∆φ ≈ ∆φ,

0 = −∆φ+
4

3
β ⇒ ∆φ =

4

3
β =

4GM

c2b
as observed by Eddington and Campbell.

8 Cosmology

[Note: There are no formulae in the Relativity section of the formula book for this section,
though some formulae are found in the Cosmology section of the formula book. These have
been boxed in the usual way but be warned they are found in a different section of the formula
book (and a(t) is written R(t); K as k).]

Cosmology applies only on very large scales, that is, when all the galaxy clusters etc are
smoothed out.

8.1 Fundamentals

8.1.1 Definitions

• Isotropic: Looking in different directions, the Universe looks the same

• Homogeneous: As viewed from different positions at the same time6, the Universe looks
the same (for example, the density is the same)

• Comoving: Moving at such a velocity that everything else in the Universe moves isotrop-
ically, that is, moving at the “average” velocity of matter in the Universe

6Supposing the observers have synchronised their watches so they know what time to take measurements at
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8.1.2 Fundamental Observers

There are some particularly useful reference frames with which to do Cosmology, called funda-
mental observers. We might imagine conceptually placing one at every point in 3D space. For
a synchronous coordinate system:

• The fundamental observers have somehow synchronised their time coordinates x0 = t.
They travel along geodesics so this is also the proper time for each observer.

• The spatial coordinates xi are constant in time for a given fundamental observer.

With this coordinate system, we can place some restrictions on what the observers will observe:

• Fundamental observers all observe the Universe to be homogeneous and isotropic

• They must therefore comove with matter in the Universe; if they were moving in a
particular direction relative to the matter, then they would observe more matter coming
towards them than away from them, breaking isotropy

• Their times must pass at the same rate; if one observer’s time passed more quickly then
there would have to be something special about their position, breaking homogeneity

• They must not be accelerating; if they were there would be a preferred direction (that in
which the acceleration occurs). They thus travel along geodesics

• They must all measure the same density and it must be locally constant in space; other-
wise there would be gradients and thus anisotropy

8.2 Robertson-Walker Metric

The line element in synchronous coordinates is given by

ds2 = c2 dt2 + gij dxi dxj

Now whatever the spatial behaviour of gij, its temperal behaviour must be the same at all points
(homogeneity). It must thus be separable into gij = −a(t)2γij(x

i), for some a (> 0 wlog) and
γij; the latter is the metric for 3D space. As such it must represent space as homogeneous and
isotropic, which restrict it to the form

dσ2 = B(r) dr2 + r2 dΩ2

From this form, one can deduce the connection terms Γijk for the 3D space, from which one
can deduce the components of the 3D Rijkl, Rij , and R. After tedious calculation one obtains

R = − 2

r2

[
1− d

dr

( r
B

)]
but for homogeneity this cannot depend on position, and so must be equal to a constant, taken
traditionally to be −6K, with K the curvature constant. We hence obtain:

B(r) =
1

1−Kr2 + A/r
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for some integration constant A. A can be deduced by also using the fact that other invariants
like RijR

ij must be constants. This invariant is evaluated to be

RijR
ij = 12K2 +

3

2

A2

r6

and so we must have A = 0; the 3D line element is then

dσ2 =
1

1−Kr2
dr2 + r2 dΩ2

and the 4D Robertson-Walker metric is then

ds2 = c2 dt2 − a(t)2 dσ2

The behaviour of the space depends on K:

• K = 0: This simply corresponds to flat Euclidean space. Current measurements suggest
that the Universe is like this

• K > 0: This describes a closed Universe, like a sphere

• K < 0: This describes on open Universe, like a hyperboloid

We now look at the non-Euclidean cases in turn:

8.2.1 Closed: K > 0

Changing coordinates r → χ:

r = SK(χ) ≡ 1√
K

sin
(√

Kχ
)

⇒ dr = cos
(√

Kχ
)

dχ

where χ runs from 0 to π/
√
K, has the same units as r, and is time-independent and hence a

comoving coordinate. We then have

dσ2 =
cos2

(√
Kχ
)

1− sin2 (Kχ)
dχ2 + SK(χ)2 dΩ2 = dχ2 + S2

K dΩ2 = dχ2 + S2
K dθ2 + S2

K sin2 θ dφ2

This also happens to the metric for the surface of a 3-sphere of radius SK(χ). The volume of
this closed space is finite:

V =

∫ π/
√
K

0

dχ

∫ π

0

dθ

∫ 2π

0

dφ
√

(1)(S2
K)
(
S2
K sin2 θ

)
= 4π

∫ π/
√
K

0

dχS2
K =

4π

K

π

2
√
K

=
2π2

K3/2

8.2.2 Open: K > 0

Using a different definition of SK

r = SK(χ) ≡ 1√
|K|

sinh
(√
|K|χ

)
⇒ dr = cosh

(√
|K|χ

)
dχ

where now χ ∈ [0,∞)

dσ2 =
cosh2

(√
|K|χ

)
1 + sinh2

(√
|K|χ

) dχ2 + S2
K dΩ2 = dχ2 + S2

K dθ2 + S2
K sin2 θ dφ2

which is also the metric for the surface of a 3-hyperboloid, the volumes of which are infinite.
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8.3 Evolution of the Universe

For any value of K, we can write

ds2 = c2 dt2 − a(t)2
[
dχ2 + S2

K dΩ2
]

SK(χ) =


sin
(√

Kχ
)
/
√
K K > 0

χ K = 0

sinh
(√
|K|χ

)
/
√
|K| K < 0

Consider two observers at χ = 0 and χ = ∆χ in some direction (θ, φ). The distance between
them at a given time is l(t) = a(t)∆χ. Define the quantity

H(t) ≡ 1

a

da

dt
=

1

l

dl

dt

Depending on who you talk to, H(now) ≡ H0 ≈ 70km s−1 Mpc−1, the Hubble constant (con-
stant in space (for homogeneity) rather than time). This means that the observer at sees
everyone else moving isotropically away equal fractional rates (i.e. twice as far away, twice the
recession rate).

8.3.1 Cosmological Redshift

Suppose a photon travels from (tE, 0, 0, 0) to (tR, χR, 0, 0) (angles taken to be 0 wlog from
isotropy), so xµ = (t(ζ), χ(ζ), 0, 0) and pµ = (p0, χ̇, 0, 0). The photon follows a (null) geodesic,
so follows a Lagrangian L = c2ṫ2−a2χ̇2. Using e−L{χ} gives a2χ̇ = const. so χ̇ ∝ a−2. Being
null, c2(p0)2 − a2χ̇2 = 0 ⇒ cp0 ∝ a−1. Now the energy, as before, is E = gµνu

µpν where u is
that of the observers – but the observers are not moving in space and hence uµ = (1, 0, 0, 0)
and E = cp0 ∝ a−1. There will thus be a redshift:

1 + z =
λR
λE

=
EE
ER

=
a(tR)

a(tE)

8.3.2 Friedmann Equations

The form of a(t) is determined by EFE. The ingredients to this determination are

• Isotropy demands that ρ and p depend only on t, and hence that T µν is isotropic. We
take the ideal fluid form

T µν =
(
ρ+

p

c2

)
uµuν − pgµν

• The observers’ velocities are uµ = (1, 0, 0, 0), being stationary

• The metric is of the form ds2 = c2 dt2 − a(t)2γij dxi dxj for the γij discussed above

• A lengthy calculation using this metric shows that

R00 = 3ä/a R0i = 0 Rij = − 1

c2

(
aä+ 2ȧ2 + 2Kc2

)
γij

• The EFE can be written as

Rµν = −8πG

c4

(
Tµν −

1

2
gµνT

)
+ Λgµν
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The R00 and Rij components together give

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

1

3
Λc2

(
ȧ

a

)2

+
Kc2

a2
=

8πG

3
ρ+

1

3
Λc2

known together as the Friedmann equations F1 and F2, which constrain a.
The conservation of energy equation, ∇µT

µν , eventually gives

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0

Depending on the relationship between ρ and p, we find a relation between ρ and a. For dust,

p = 0, which gives ρ ∝ a−3; for radiation, p = ρc2/3 , which gives ρ ∝ a−4. Now ρ is the

energy density /c2, which for radiation is proportional to T 4, so also T 4a4 = const. .

8.3.3 Λ = 0

Recalling that H = ȧ/a, the second Friedmann equation gives

K =
a2

c2

8πG

3

(
ρ− 3H2

8πG

)
so depending on the balance of ρ and H, the Universe might be open, flat or closed.

For ρ > 0 and p > 0, F1 gives ä < 0, so the scale factor was probably 0 once. Also suggests
the age of the Universe is less than a(now)/ȧ(now) = 1/H0 ≈ 14Gyr.

For K = 0 (as seems to be observed), F2 gives relations between (ȧ/a)2 and ρ, and ρ depends
on a in a way depending on whether the Universe is dominated by matter or radiation. Either
way, a proportionality between a and t, and hence a relation for H(t), can be found.

8.3.4 Λ > 0

The Universe is expanding, probably because Λ > 0. As the Universe expands, the density

tends to 0. If K = 0, we then have H =
√

Λc2/3 and a = exp
(√

Λc2/3t
)

.
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