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1 Basic Properties

1.1 Motion

1.1.1 Radial

Radial velocities are measured using the Doppler effect. Spectral features appear at redder
wavelengths for stars that are receding from us. The redshift z is defined by:

z ≡ λobs − λ0

λ0

=

√
1 + β

1− β
− 1 ≈ β

according to SR.

1.1.2 Transverse

The speed at which stars move across the sky year on year is known as the star’s proper motion
(measured in arcseconds / year). With parallax effects superimposed, stars appear to travel
along helical paths across the sky.

1.2 Magnitude

The magnitude scale is reverse logarithmic with base 5
√

100 = 100.4 ≈ 2.512. A star 100 times
brighter (in terms of flux received at Earth) thus has an apparent magnitude 5 lower; a star
100 times dimmer has an apparent magnitude of 5 greater:

F2

F1

= 10−0.4(m2−m1) ⇒ m2 −m1 = −2.5 log10

(
F2

F1

)

The absolute magnitude, M , is the apparent magnitude a particular star would have if it
were 10pc away. If a star is d parsecs away and we receive a flux Fd, then because F ∝ L/d2,
at 10pc we would receive a flux F10 where

F10(10)2 = Fdd
2 ⇒ Fd

F10

= 10−0.4(m−M) =

(
10

d

)2

⇒ m−M = −2.5 log

(
10

d

)2

= 5 log

(
d

10

)
= 5 log d− 5
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Magnitudes sometimes refer to a particular filter through which the flux is being measured.
The filters are named: U (near-UV), B (blue), V (“visual” – green), R (red), I (near-IR), J, H,
K, L (progressively far-IR).

If there is intervening dust blocking some starlight, the star may be assigned an unfairly
high absolute magnitude. The bolometric magnitude Mbol accounts for this.

1.3 Mass and Binary Stars

Figure 1 | Circular Binary
Star System.

A star’s mass determines most of its other properties. It is eas-
iest to measure the mass of distant stars by how their gravity
affects another star in a binary system. In what follows (and in
the notes, despite the misleading pictures), it is assumed for sim-
plicity that the orbits are concentric circles with no eccentricity,
as in Figure 1. Binary stars are classified based on how we know
that they aren’t just one really bright star.

1.3.1 Visual Binaries

These can be individually resolved and the orbits tracked over
time. The motion of a binary orbit about the centre of mass is
such that:

M1

M2

=
a2

a1

=
θ2

θ1

where ak is the orbital radius, and θk = ak/d the angle thereby subtended (assuming the system
is face-on), of body k. Furthermore, from the two-body problem we also have:

G(M1 +M2)T 2 = 4π2(a1 + a2)3 = 4π2d3(θ1 + θ2)3

where T is the period of the orbit and d is the distance to the system. From this and the above
ratio, one can deduce both M1 and M2 simply by measuring T , d, θ1 and θ2.

Binary orbits are rarely face-on; they are usually inclined by an angle i to the plane of the
sky, making the orbital radii appear smaller by a factor of cos i than they actually are. If the
inclination angle is known, the above formula can simply be adjusted:

G(M1 +M2)P 2 = 4π2d3

(
θ1 + θ2

cos i

)3

where θk are the angles which are actually measured from our point of view, so θk/ cos i are
the (larger) angles which we would see if we were face-on.

1.3.2 Spectroscopic Binaries

if i 6= 0, the stars have an oscillating radial velocity and hence an oscillating redshift, so we
can measure vk,r = vk sin i at the peak redshift. For circular orbits, vk,r = (2πak/T ) sin i, so:

M1

M2

=
v2,r

v1,r
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However to use K3L to find the sum of the masses, we need to know i:

G(M1 +M2)T 2 = 4π2

(
T

2π
v1 +

T

2π
v2

)3

⇒ G(M1 +M2) =
T

2π

(
v1,r + v2,r

sin i

)3

In single-lined spectroscopic binary systems, only one set of oscillating spectral lines is seen;
this may occur if the unseen body is a dim star, a planet, or a black hole. Using the ratio
above,

G(M1 +M2) =
T

2π

(
v1,r

1 +M1/M2

sin i

)3

⇒ M3
2

(M1 +M2)2
sin3 i =

Tv3
1,r

2πG

The left-hand side of the second equation is the mass function and depends on i which is
unknown. It does at least give a lower bound of M2 > Tv3

1,r/2πG.

1.3.3 Eclipsing Binaries

If i is very close to π/2, the orbit will be edge-on as seen from Earth, and the stars eclipse each
other at certain points in their orbits, causing periodic dimming. By recording the light curve
of the system very accurately, one can obtain information about the radii and temperatures of
the two stars.

1.4 Effective Temperature and Luminosity

The specific intensity I(λ) is the power flux per wavelength per solid angle. That is, if U(λ)dλ
is the energy coming through an area dA at an angle θ to the area’s normal, in a time dt, in
a wavelength band of width dλ around λ and heading in the direction of the solid angle dΩ,
then

U(λ) dλ = I(λ) dA cos θ dt dλ dΩ

Most stars’ surfaces behave approximately as black bodies, which have a specific intensity
given by stat thermo as:

I(λ) = B(λ;T ) =
2hc2/λ5

ehc/λkT − 1

where T is the effective temperature: that of the surface layers. Integrating over wavelength:∫ ∞
0

B(λ;T ) dλ = 2hc2

∫ ∞
0

1

λ5

dλ

ehc/λkT − 1
=

2k4T 4

h3c2

∫ ∞
0

u3 du

eu − 1︸ ︷︷ ︸
π4/15

=
σT 4

π
(σ = 2π5k4

15h3c2
)

The total energy per unit time coming out of a star (its luminosity) is given by:

L =

∫
dΩ

∫
dA cos θ

∫ ∞
0

dλB(λ;T ) =

∫ π/2

0

(4πR2) cos θ(2π sin θ dθ)︸ ︷︷ ︸
4π2R2

∫ ∞
0

B(λ;T ) dλ︸ ︷︷ ︸
σT 4/π

= 4πR2σT 4

so σT 4 is the total flux from the surface of the star. L depends on both R and T ; its brightness
as seen from Earth depends on R, T , and d. Using the fact that black bodies are isotropic, we
also have that u(λ), the energy per unit volume, per wavelength, is given by:

u(λ) =
1

c
I(λ)

∫
dΩ =

4π

c
I(λ)
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Integrating this over wavelength gives the total energy density:

u =
4π

c

∫ ∞
0

I(λ) dλ =
4π

c

∫ ∞
0

B(λ;T ) dλ =
4σ

c
T 4 ≡ aT 4

Photons exert a radiation pressure. Each photon carries momentum E/c; if it is reflected
it will transfer twice this, and hence the radiation pressure is given by

P =

∫
dΩ cos θ

∫ ∞
0

dλ
2I(λ) cos θ

c
=

2

c

∫ π/2

0

cos2 θ(2π sin θ dθ)︸ ︷︷ ︸
2π/3

∫ ∞
0

B(λ;T ) dλ︸ ︷︷ ︸
σT 4/π

=
4σT 4

3c
=

1

3
aT 4

Setting dB/dλ = 0 gives λmaxT = 2.90mm K , so the colour of a star is a measure of

its temperature: the bluer the hotter. Rather than measuring the entire spectrum, often one
takes the magnitudes through two different filters and subtracts them, giving e.g. a “B − V
colour” mB−mV (= MB−MV ). Lower B−V values indicate a bluer, and thus hotter, star. A
scatter plot (Hertzsprung-Russell Diagram) of MV (a proxy for brightness/luminosity) against
B − V (a proxy for temperature) shows that most stars fall on a narrow strip, known as the
Main Sequence, diagonal from dim red stars to bright blue stars. Other islands of stars also
appear, in the bright red and dim white regions, home to red giants and white dwarfs.

1.4.1 Luminosity, Mass and Lifetime

From measuring the luminosities and masses of many stars, we find that luminosity is strongly
related to the initial mass by the power law L ∝ M3.5. Luminosity is essentially how quickly
a star is converting its mass into energy and shining it out into space, so L ∝ − dM/dt .
Integrating, we find:

t ∝M−2.5
0

This is a strong dependence: a star of two solar masses will live only 18% as long.

2 Atmospheres

2.1 Opacity κ(λ)

When light of specific intensity I travels through a cloud of gas, some of it is absorbed:

dI = −κ(λ)ρI ds

where κ is the wavelength dependent opacity of the gas. We see that the mean free path of
photons through the gas is 1/κρ. Thermodynamically, the mean free path is given by 1/σn
where σ(λ) is the interaction cross-section. Thus

κ(λ)ρ = σ(λ)n
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2.1.1 Sources of Opacity

• Bound-bound: very strong near atomic transition wavelengths and very weak elsewhere

• Bound-free: very strong below a certain value of λ at which common species can be
ionised (to bring about ionisation or molecular photodissociation). This gives a mean
opacity of the form κ ∝ ρT−7/2.

• Free-free: also a continuum, arising from free electrons absorbing photons to accelerate.
This also gives a mean opacity of the form κ ∝ ρT−7/2.

• Thomson scattering: the non-relativistic limit of Compton scattering1. Only relevant
in very dense or hot stars (high n), as the σ for this interaction (involving photons being
scattered by electrons) is very small. This gives a mean opacity of the form κ ∝ 1 + X,
where X is the hydrogen mass fraction.

Figure 2 | Opacity κ and
Temperature T .

The relationship between κ and T is shown in Figure 2.
We see that at low T , κ rises rapidly as easily-ionised ele-
ments like K and Na are ionised, forming both H– ions (H
has a higher ionisation potential), which have strong bound-
free opacity, and free electrons for free-free absorption. As T
increases H and He are then ionised, further increasing the
electron density and κ. When T is high enough that most
atoms are ionised, κ simply depends on the details of the free-
free process, so κ ∝ ρT−3.5. At yet higher T , κ levels out as
temperature-independent electron scattering dominates. The
bump at log T ≈ 5.2 is where kBT ≈ 13.6eV.

• O stars are hot enough that Thomson scattering is
relevant, as well as bound-free absorptions for H and
He, and free-free absorption.

• B and A stars mostly just have bound-free
absorptions for H, and free-free absorption.

• F–M stars (including the Sun) are cool enough to have lots of H− for bound-free ab-
sorptions, and high electron density for free-free absorptions. Particularly cool stars also
have molecules like TiO, leading to many bound-bound and bound-free contributions.

2.1.2 Optical Depth

The optical depth τ(λ) is a dimensionless property of a given path through some gas. Typically
this path starts at some depth within a star and ends at its surface. Its definition is:

τ(λ) =

∫ s

0

κ(λ; s′)ρ(s′) ds′ ⇒ I(s) = I0e
−τ

1In this limit, the frequency of the photons are not changed, though their direction is
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where I0 is the incident specific intensity at the wavelength in question. τ can be thought of
as the number of mean free paths contained from s′ = 0 to s′ = s.

The stellar photosphere is defined to be the depth from which τ = 2/3 as viewed

radially. If one looks at a star from a fixed viewpoint, looking at the centre of the star is
looking radially, and so one sees right to the lower limits of the photosphere. However, looking
at the sides of the star (the “limbs”) does not see to the lower limits of the photosphere2, but
to a smaller radial depth into the star, at which the matter is cooler and less luminous. This
leads to “limb darkening”, whereby the limbs of stars appear progressively redder and dimmer.

2.2 Absorption Lines

Stellar spectra feature absorption lines from atoms and molecules contained within the atmo-
sphere. For example, the Hα line is due to an absorption to promote an electron in a H atom
from the n = 2 to n = 3 state, corresponding to a photon of energy 13.6

(
1
4
− 1

9

)
= 1.89eV and

wavelength 656nm – deep red.

2.2.1 Line Strength

The Hα absorption line requires lots of hydrogen atoms to be in the n = 2 state, and there are
two competing temperature-dependent factors determining the population of this species.

Thermal Excitation. The probability of an atom being in a state with energy En and
degeneracy gn is given by Boltzmann’s distribution:

Pn =
1

Z
gne
−En/kT

where the partition function Z =
∑∞

1 gne
−En/kT is a normalisation factor.

Collisional Ionisation. At higher temperatures, ionising interatomic collisions become
more frequent, and so atoms are bonked into higher ionisation states. The Saha equation
relates the densities of atoms (in units of m−3) in ionisation state i relative to state i+ 1 (e.g.
the densities of Fe II relative to Fe III):

ni+1

ni
=

2

neλ3
e

Zi+1

Zi
exp

(
− χi
kBT

)
where χi is the energy needed to convert an atom of state i to state i + 1, Zi is the partition
function of an atom in state i, and λe is the thermal de Broglie wavelength, that of an electron
with kinetic energy πkBT : λe = h/

√
2meπkBT .

The strength of the Hα line peaks at around T = 104K. It is weaker (i.e. there is not much
HI in the n = 2 state) in stars on either side of this temperature because:

• Cooler stars have most of their hydrogen in the n = 1 state

• Hotter stars have ionised most of their hydrogen to HII

For the same reasons, all spectral lines have a peaked absorption strength profile, as shown in
Figure 3. The strengths of different absorption lines can identify temperature to an accuracy

2if one looks at the very sides of the star, one can see all the way through it!
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of order 10K, which is much more accurate than comparison to blackbody spectra. Spectral
features were use to classify stars in the system OBAFGKM, which is in decreasing order of
temperature. This sequence is then subdivided from 0 to 9; O9 is slightly hotter than B0, etc.
Hotter stars are also sometimes referred to as “early-type”, and cooler stars as “late-type”.

Figure 3 | Strengths of Spectral Lines at Various Temperatures.

2.2.2 Spectral Line Width

The width of a spectral line is quantified by the equivalent width, given by:

W =

∫
I0 − I(λ)

I0

dλ =

∫
(1− e−τ ) dλ

where I0 is the specific intensity on either side of the line. For no absorption, I(λ) = I0 ⇒
W = 0. For total absorption within a band ∆λ, I(λ) = 0 in this range ⇒ W = ∆λ. A given
absorption line does not just have I(λ) 6= I0 at only one particular λ, but over a range and
hence W 6= 0; there are three reasons why.

Natural Broadening. As a result of the uncertainty in the energies of higher energy
states with finite lifetimes, spectral lines naturally have a Lorentzian profile centred on the
redshifted wavelength:

φ(λ; v) =
1

π

δk
δ2
k + (λ− λ0(v))2

where k is the upper level of the transition, and δk is called the radiation damping constant,
which encodes the inverse of the excited state’s lifetime.

Pressure broadening effectively increases δk by δp ∝ T 1/2n, as collisions decrease the
lifetimes of upper levels. At a given temperature, more luminous stars are larger, have lower
surface gravity and atmospheric pressure, so have thinner peaks; dimmer stars are smaller,
higher pressure, and have wider peaks. The luminosity class scale from I (most luminous) to
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VII. Stars of class V are those on the Main Sequence; I through IV are various levels of giant
star; class VI is a bit dimmer than most Main Sequence star; class VII are the white dwarfs.

Doppler Broadening. Due to thermal motion of individual atoms, the wavelengths of
absorption can be redshifted or blueshifted if the atoms are moving on our line of sight. The
radial velocity distribution is Gaussian, centred on the velocity of the star v0:

Ψ(v) =
1√
πb

exp

(
−(v − v0)2

b2

)
where b is the Doppler width of the distribution. If only thermal effects were involved, b would
simply be

√
2kT/m as predicted by statistical mechanics, but stellar atmospheric turbulence

causes an increase in the width: b2 = b2
thermal + b2

turb.

2.2.3 Curves of Growth

The alternative definition of τ(λ) is

τ(λ) =

∫ s

0

σ(λ)n(s′) ds′ ≈ Nσ(λ)

where N ≡
∫ s

0
n(s′) ds′ is the column density of the atom which causes the absorption (in

m−2). The relative atmospheric abundances of atoms can be deduced from their relative
N . However, to find N from τ (in turn from W ), we first need to know σ(λ). It can be
written as σ(λ) = σ0Φ(λ), where σ0 involves atomic parameters and Φ(λ) = φ(λ; v) ∗ Ψ(v)
is the broadening function, summing over all possible atomic radial velocities. The overall
cross section is therefore σ = σ0φ(λ; v) ∗ Ψ(v), and the overall optical depth is then τ(λ) =
Nσ0φ(λ; v) ∗Ψ(v): a Voigt function.

2.3 Hydrodynamics

In any atmosphere, the equation for hydrostatic equilibrium is

dP

dr
= −Gm(r)ρ

r2
= −ρg

A negative pressure gradient is intuitive as we expect there to be lower pressures higher up
as there is less gas to support. It is often found that the density is proportional to the pres-

sure (at least locally), and so the pressure decays as exp
(
− r
HP

)
, where HP depends on the

proportionality between ρ and P . HP is a length scale known as the pressure scale height.
If some event takes place in a star (like a small explosion), its effects will not be felt instantly

throughout the star. In the absence of pressure, a particle falling through a star would take a
time of order √

2R

g
=

√
2R

R2

GM
=

√
3

2π

1

G 〈ρ〉

We therefore take as a dynamical timescale for a given star the quantity tdyn = (Gρ)−1/2 .

This is essentially the maximum timescale over which gas can move from one equilibrium state
to another after a change, and applies to stars, interstellar clouds, and even whole galaxies.
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3 Energy

3.1 Sources

3.1.1 Gravitational Potential

When a cloud collapses into a star, gravitational energy is converted into kinetic/thermal
energy. According to the Virial Theorem:

〈K〉 = −1

2
〈U〉 (VT)

so half of the lost potential energy when a cloud is converted into thermal energy on gravita-
tional collapse. Assuming uniform density, the total gravitational potential energy of a star
is:

U =

∫ R

0

−
G4

3
πr3ρ

r
4πr2ρ dr = −16Gπ2R5ρ2

15
= −3

5

GM2

R

3GM2/5R is freed up; according to VT half of that goes into heating up the new star; the
other half is radiated away. For the Sun, this radiation is 3GM2/10R = 1048erg, sufficient only
to power the Sun at its current luminosity for 10Myr, so this is not what powers the Sun.

3.1.2 Fusion

On fusing four 1H into 4He, converts 0.007 of the hydrogen mass into energy. If 10% of the

Sun’s mass were converted from 1H to 4He, that would provide (0.007)(0.1)M�c
2 = 1×1051ergs,

enough to power the Sun at its current luminosity for 1010 years.
High temperatures are required to fuse 4 1H into 4He. Setting 3

2
kT equal to the potential

energy between two protons at the strong force radius (rf ≈ 1fm) gives T = 1010K, way hotter
than the Sun’s core. The Sun is actually able to fuse because protons can quantum tunnel
through the Coulomb potential barrier, so they don’t need all that energy. Rather than getting
right up to rf , the protons only need to be within about 1 de Broglie wavelength before the
fusion can take place. We have a double equation to solve for T :

(h/λ)2

2µ
=

3

2
kT =

Z1Z2e
2

4πε0λ

using the reduced mass µ to calculate the de Broglie wavelength to account for the relative
motion of the two particles. Eliminating λ gives T = Z2

1Z
2
2µe

4/12π2ε20h
2k, which for two

protons is a much more realistic 107K. For two He nuclei, the temperature needs to be a factor
22 × 22 × 4 = 64 times greater.

ε, the energy released per unit time per unit mass, is naturally proportional to the mass
fractions of the two fusing species, proportional to the density for a two-body collision, and
proportional to T β where β depends on the fusion reaction in question.

Proton-Proton Chain. The main process for the Main Sequence. Overall,

4 1H→ 4He + 2 e− + 2νe
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There are three pathways via which the proton-proton chain can occur, PPI through PPIII,
though PPI occurs about 70% of the time. β = 4.

CNO Cycle. Also converts 1H to 4He , by a process catalytic in CNO. It is only more
efficient than PP if the temperature is above about 2×107K (for a star of solar composition3) as
β = 17, so is dominant only in stars of M & 1.5M�. Because stars have a negative temperature
gradient, CNO fusion occurs within a much smaller radius than PP.

Triple-Alpha Process. Three 4He fuse to form 12C. Of course, the probability of three
meeting together simultaneously is very low; there is an intermediate 8Be nucleus, but it is so
short-lived that ε3α is proportional to ρ2 instead of ρ. Requiring high temperatures (& 108K)
and pressures, the triple-alpha process has β = 40, being incredibly temperature-sensitive, and
thus centrally-localised.

While the core burns 4He, there will still be a shell further out which is too cold; PP and
CNO fusion can still occur here though.

Alpha Ladder. Once there’s enough 12C around, they can fuse with 4He to form O, Ne,
Mg, Si, S (α-capture nuclei) with progressively less energy being released at each step.

Burning of Heavier Elements. For massive stars, core temperatures can reach 6×108K,
high enough for carbon nuclei to fuse together into 24Mg. At 109K oxygen nuclei can fuse into
32S. At 1.5×109K, Wien’s law gives a hard X-ray wavelength, photons of which can photofission
the nuclei present, giving a messy chaos of photons, protons and neutrons. At 3×109K, silicon
and sulfur continue the alpha ladder up to Fe and Ni for a couple of days, but beyond that any
fusion that occurs is endothermic and won’t help hold the star up any longer.

Similarly to stars burning 4He in the core, stars whose cores are hot enough to fuse the
heaviest of nuclei have an onion structure around the core where progressively lighter nuclei
are fused; there will also be a non-burning (inert) envelope of hydrogen around the outside.

Neutron Capture. At photofissile temperatures, the orphaned neutrons are readily ab-
sorbed by any remaining nuclei, as they experience no Coulomb barrier. Nuclei thus progres-
sively absorb neutrons until an unstable isotope is reached, which undergoes β− decay into
a more stable element one further along the Periodic Table. This then continues to absorb
neutrons until an unstable isotope of this element is reached, and so on. This is the s-process,
and it occurs a lot in stars on the AGB; typical resulting elements are Cu and Pb.

Supernovae and neutron star formation provide such a barrage of neutrons that unstable
nuclei do not have time to undergo β− decay before they absorb another neutron. As such,
neutron capture continues until a silly-looking neutron-saturated isotope like 11Li or 22C is
produced. When the often brief neutron flux ends, the nuclei then undergo a series of β−

decays until they reach a stable nucleus. A typical indicator of this r-process is Eu.

3.2 Energy Transport

There are three processes by which the energy released by fusion reactions could be transported
to the surface, in the form of photons and thermal energy of electrons and neutrinos:

• Radiation – photons being repeatedly absorbed and emitted until they reach the surface

• Convection – due to macroscopic motion of large buoyant cells of material

• Conduction – due to microscopic particle collisions (only important in white dwarfs)

3The Sun’s core temperature is 1.6× 107K, so only about 2% of the Sun’s fusion occurs by CNO.
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3.2.1 Radiation

Eddington’s Equation gives the temperature gradient necessary to carry away all the luminosity
produced by a star:

dT

dr
= −3

4

1

ac

κρ

T 3

Lr
4πr2

where Lr is the total luminosity produced within a radius r.
If there is sufficient radiation and insufficient gravity, the outermost layers of the star will be

blown away. The maximum luminosity is called the Eddington luminosity LE. At the surface,

dP

dr
= −GMρ

R2
P =

1

3
aT 4 dT

dr
= −3

4

1

ac

κρ

T 3

L

4πR2

Differentiating the second, substituting the third, and equating the first gives LE = 4πcGM/κ.

3.2.2 Convection

According to Kramers’ Law, κ ∝ T−3.5, so on moving out from the star’s core to cooler layers,
κ rises, and thus so does the magnitude of the temperature gradient, as radiation is less able to
pass through and equilibrate T . Large temperature gradients are unstable phenomena in any
type of atmosphere, and lead to chunks of rising gas (with higher T than their surroundings)
convecting up.

Assuming that rising gas parcels move adiabatically (i.e. too quickly to balance temperature
with the surroundings), the Schwarzschild condition for convective stability is:

dT

dr
>
γ − 1

γ

T

P

dP

dr
=

kB
mH

T

CPP

dP

dr
(Stable)

Now dT/dr and dP/dr are both negative – the star is therefore stable unless dT/dr is so
negative that it becomes more negative than the RHS. If that happens then the temperature
gradients are too strong and convection occurs.

Figure 4 | Convective and Radiative
Regions in Stars of Differ-
ent Masses.

Stars are divided into convective layers and ra-
diative layers, depending on which method of energy
transport is dominant at different radii. If gas is only
partially ionised, then not only is the opacity high
(leading to large temperature gradients), but the spe-
cific heat is also high, moving the RHS above closer
to 0 and leaving less room for dT/dr : both make
convection more likely. As such, the coolest stars
(M < 0.4M�) are fully convective, as they mostly
consist of partially ionised gas, which has high κ and
CP . Between 0.4M� < M < 1.5M�, the core be-
comes hot enough for the gas to be fully ionised there,
reducing κ and CP and causing radiation to be more
efficient; in the outer layers there is still only partial
ionisation, so convection still occurs (the Sun is radiative up to 0.7R� and convective from
there to the surface). By about 1.5M�, the star becomes hot/ionised/transparent/low-heat-
capacity enough for the star to be fully radiative. For stars above 2M�, CNO and triple-alpha
processes become dominant, leading to a massive increase in core luminosity and hence tem-
perature gradients: hence convection begins again in the cores of the largest stars.
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4 Models

4.1 Equations of Stellar Structure

1. Mass

dm(r)

dr
= 4πr2ρ (1)

2. Hydrostatic

dP

dr
= −Gm(r)ρ

r2
(2)

3. Luminosity

dLr
dr

= 4πr2ρε (3)

4. Transport, radiative or convective

dT

dr

∣∣∣∣
rad

= −3

4

1

ac

κρ

T 3

Lr
4πr2

dT

dr

∣∣∣∣
ad

= −γ − 1

γ

µmH

k

Gm(r)

r2
(4r, 4c)

These are coupled to each other by equations of state for ε, κ, P and T eff:

5. Production
ε = ε0ρ

αT β (5)

6. Opacity
κ = κ0ρT

−3.5 (6)

7. Pressure, gas or radiation

Pgas =
ρkT

µmH

Prad =
1

3
aT 4 (7g, 7r)

µmH is the average particle mass; µ depends on the mass fractions X and Y , in a way best
understood from the following table. Neglecting the masses of electrons and assuming
elements larger than He have equal numbers of protons and neutrons,

Quantity 1H 4He AZ
Mass per avg mH XmH Y mH (1−X − Y )mH

Nuclei per mH X Y/4 (1−X − Y )/A
Particles per nucleus 2 3 ≈ A/2

⇒ µ = mH per particle =
X + Y + (1−X − Y )

2X + 3Y/4 + (1−X − Y )/2
=

4

6X + Y + 2

8. Effective Temperature
L = 4πR2σT 4

eff

Importantly, T eff is an artificial construct, not really a physical temperature T .
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4.2 Homology

There is no analytic way to solve the above equations in general, so we restrict ourselves to
homologous sets of stars. To be homologous, two stars must contain the same proportion of
their mass within the same proportion of their radius. For instance, for the Sun, m�(0.25R�) ≈
0.5M�, and many other stars have roughly m(0.25R) ≈ 0.5M .

For a homologous set of stars, one can deduce proportionalities between various stellar
properties by dimensional analysis. From equations (1)-(4), these are

M

R
∝ R2ρ

P

R
∝ Mρ

R2

L

R
∝ R2ρε ∝ R2ρ1+αT β

T

R
∝ κρ

T 3

L

R2
or ∝ µGM

R2

4.2.1 Luminosity-Mass Revisited

For a radiative star dominated by gas pressure, solving

M

R
∝ R2ρ

P

R
∝ Mρ

R2

T

R
∝ κρ

T 3

L

R2
P ∝ ρT

µ

for L, and treating κ as a constant, we obtain L ∝ M3, not far off the observed L ∝ M3.5

considering the dodgy approximations.

4.2.2 Minimum Stellar Mass

The minimum temperature for proton-proton core fusion is about 4 × 106K; the Sun’s core
temperature is about 1.5×107K. Taking α = 1 and β = 4, we have L

R
∝ R2ρ2T 4. In combination

with the four above, one eventually obtains M ∝ T 7/4. The star homologous to the Sun with
the minimum mass so that its core temperature is high enough to initiate PP fusion thus has
mass Mmin = (4× 106/1.5× 107)7/4M� = 0.1M�.

4.3 Degeneracy Pressure

White dwarfs and neutron stars are supported by degeneracy pressure; the derivation in the
notes was so bad I’ve stolen the PQM one (without the stray factors of 2).

Consider a quantum gas of fermions confined to a cube of size L: each will have a wavevector
k = (2π/L)(nx, ny, nz), ni ∈ Z, occupying a k-space volume (2π/L)3 = 8π3/V . If there are N
fermions at zero temperature, they will occupy a k-space volume of

N

2

8π3

V
=

4

3
πk3

F ⇒ kF =

(
3π2N

V

)1/3

=

(
3π2ρ

m

)1/3

where kF is the Fermi momentum, the maximum momentum magnitude (provided everything
is in as low an energy state as possible) and the factor of 1

2
at the start is due to the spin

degeneracy. The total energy is then

E =

∫ kF

0

2
~2k2

2m︸ ︷︷ ︸
Energy

per state

4πk2 dk

8π3/V︸ ︷︷ ︸
Number
of states

=
~2V

10mπ2
k5
F =

~2

10mπ2

(
3π2N

)5/3
V −2/3
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The degeneracy pressure is given by Pd = − ∂E/∂V :

⇒ Pd =
~2

15mπ2

(
3π2N

V

)5/3

=
~2

15mπ2

(
3π2ρ

m

)5/3

∝ T 0ρ5/3m−8/3

so the pressure is independent of T and proportional to N5/3. Also, Pd ∝ m−8/3, so neutron
degeneracy pressure is much weaker than electron. In the limit of relativistically moving
electrons, the energy per state is pc = ~ck ∝ k rather than ∝ k2, so E ∝ k4

F and Pd ∝ ρ4/3

rather than ρ5/3.
The gravitational potential energy is Ug = −3GM2/5R ∝ −M2V −1/3; hence the gravita-

tional pressure Pg ∝ −M2V −4/3; compare Pd ∝ N5/3V −5/3 ∝ M5/3V −5/3. Setting the two
pressures equal to (minus) each other for equilibrium, we find MV is constant – if more mass
is added to a degenerate body, it will shrink!
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5 Evolution

Stellar evolution is complicated, and some of this section will be about observations where we
don’t quite understand the reasons behind them and so are justified poorly.

5.1 Formation

5.1.1 Collapse of Giant Molecular Cloud

An equilibrium self-gravitating system will have 2K+U = 0; if 2K+U > 0, there is too much
kinetic/thermal energy and the cloud expands. If 2K + U < 0, perhaps because the cloud has
been knocked out of equilibrium by shockwaves or collisions, then there is not enough K to
support the cloud under gas pressure and it will collapse. The potential energy of a uniform
sphere is

U = −3GM2

5R
= −3GM2

5

(
4πρ

3M

)1/3

= −3G

5

(
4πρ

3

)1/3

M5/3

whereas the kinetic energy is 3
2

M
µmH

kT . The instability criterion is then:

3MkT

µmH

<
3G

5

(
4πρ

3

)1/3

M5/3 ⇒ M >

(
5kT

GµmH

)3/2(
3

4πρ

)1/2

︸ ︷︷ ︸
MJ

If the mass exceeds the Jeans mass MJ for a given density, the cloud will collapse in a time of
order (Gρ)−1/2. We see that high densities and low temperatures are conducive to gravitational
collapse. Alternative criteria can be derived for the Jeans radius and density for given masses,
densities, or radii.

Stars form from the cores of giant molecular clouds, which are so cold (10K) that
hydrogen exists mostly as molecular H2, and relatively dense (1010m−3). As the GMC collapses
(roughly isothermally), ρ ↑ and so MJ ↓, causing the cloud to fragment into many smaller
collapsing clouds. As these clouds collapse, the lost potential energy is converted to equal
parts thermal energy and IR radiation, the latter of which can initially escape into space.

5.1.2 Protostars

When ρ (and hence κIR) become high enough that the IR can no longer escape, the IR too is
forced to convert to thermal energy and the gas pressure increases to the point of preventing
further collapse – the quasistable result is a protostar. Gas continues to fall onto the protostar,
releasing more GPE and heating it up.

When T reaches 2× 103K, the thermal energy is sufficient to dissociate H2→2H. Thermal
energy thus goes into dissociating H2 rather than keeping the protostar up, and hydrostatic
equilibrium is suspended. The star resumes collapse until enough thermal energy is released to
support the now-atomised protostar, at which point hydrostatic equilibrium resumes and the
protostar restabilises. T continues to rise due to accreting gas, eventually ionising the star.

When mostly ionised, T ∼ 5 × 104K, which is not only far too low for fusion, but also
connotes high κ due to a decent remaining concentration of H– . Radiative transport is slow
and the protostar is fully convective and hence chemically homogeneous. Such stars are known
as T Tauri stars, and are associated with sudden variability (as material continues to fall
onto them every now and then) and high activity, as their churning convection cells and often
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rapid rotation create strong magnetic fields, which generate jets that illuminate the ISM into
emission nebulae called Herbig-Haro objects.

Convective stars of a given mass lie on the Hayashi track, the almost vertical boundary of
the low-T (right) end of the HR diagram at about 4000K. The protostar continues to collapse
(more slowly now) and as κ is so high the increase in core temperature doesn’t increase the
effective temperature much. The radius of the star decreases, but the surface T eff increases
only very slowly; the star thus moves almost downwards along the Hayashi track.

When T in the core is high enough, the κ ∝ T−3.5 regime is reached and the opacity starts
to decrease; eventually the protostar develops a radiative core. Energy can then escape more
easily and L increases; T continues to gradually increase on collapse. The star bounces up and
left on the HR diagram.

Eventually, the core reaches temperatures high enough for fusion of 1H into 4He , and the
protostar becomes a true star. It settles on the zero-age main sequence (ZAMS) at a position
depending on its mass, and doesn’t move far for potentially billions of years. The initial mass
function, a mass frequency distribution, shows that small stars are much more common than
large stars. The popular Salpeter IMF is f(M) ∝M−2.35.

5.1.3 OB Associations and Strömgren Spheres

Groups of stars containing luminous O and B stars are called OB associations. With short
lifetimes, these must have recently formed; indeed they are found near molecular clouds.

Their temperatures are high enough to ionise H atoms in the surrounding ISM, creating a
spherical HII region called a Strömgren sphere. In this region, the H are continuously ionised
and recombining, the latter of which makes the region glow in Hα. If Q is the ionisation
rate (i.e. the number of ionising photons emitted per unit time) and αnHne ≈ αn2

H is the
recombination rate per unit volume, then in steady-state:

Q = αn2
H

4

3
πr3

S ⇒ rS =

(
3Q

4παn2
H

)1/3

where rS is the Strömgren radius of the sphere.

5.2 Main Sequence (MS)

A star is on MS while 1H is burning in its core.

5.2.1 M ≤M�

As H is slowly converted to He in the core, µ = 4/(6X + Y + 2) steadily increases and core
pressure P = ρkT/µmH decreases. As a result the core is gradually squished inwards by the
weight of the outer layers, and ρ (and hence T , and also T eff and R) increase to compensate.
As the energy released in PP fusion is proportional to X2ρT 4 and X doesn’t change much
compared to ρ and T , the luminosity L of the star increases. Solar mass stars therefore move
up and left over most of their lifetimes; indeed the Sun is slowly getting brighter and hotter.

By around 10Gyr, the star has a small 4He core, which is inert (not hot enough for burning)
and hence isothermal (L = 0⇒ dT/dr = 0). An isothermal core can only support about 0.1 of
the mass of the star (the Schönberg-Chandrasekhar Limit), unless there is some degeneracy
pressure to help it up to about 0.13. 1H fusion still takes place in a shell surrounding the core,
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but because this shell is essentially as hot as the core
(dT/dr = 0), the luminosity produced continues to
increase. However it doesn’t all go into the total
luminosity of the star, some of it goes into slowly
expanding the star’s envelope/atmosphere, and hence
the rate of increase of L slows down, R increases and
T eff actually decreases. The star moves up and right, fully leaving the Main Sequence and
landing on the nearly horizontal Subgiant Branch,
where almost all surplus energy production goes into
inflating the star and reducing T eff for about 2Gyr.

Figure 5 | HR Diagram Path of a
1M� star.

As the envelope expands, the 4He core contracts
apparently. The Mirror Principle is the empirical
observation that for stars with a burning shell at inter-
mediate radii, the core within does the opposite of what
the envelope without does, as regards expanding and
contracting. If the core contracts, GPE is released, T
in the shell increases, energy production increases, and
the envelope can expand.

5.2.2 M > M�

In larger stars, the higher energy production rates cause the envelope expansion to occur
throughout its MS life, and so these stars move up and right during their MS.

Large stars have convective cores, due to the strong T dependence of the CNO cycle, and
the good mixing means that the core can be uniformly depleted of 1H . As 1H is fused, positrons
are produced, which annihilate to reduce electron density and electron scattering, reduce κ,
and enable radiative transport to take over in the outskirts of the once-fully convective core,
which therefore shrinks. When 1H runs out in the ever-shrinking core, the star collapses a
bit until T in the shell is high enough to support it. This causes T eff to lurch upwards but
the energy production is basically being relocated so L doesn’t change much – the star’s path
hooks to the left.

5.3 M < 8M� Post-MS

5.3.1 Red Giant Branch

1H fusion continues in the shell of a subgiant star, dumping the 4He on the core. Being
almost degenerate at this point (see Section 4.3), this causes the core to contract, the shell
temperature and density to increase, and hence the energy production rate to increase, faster
1H fusion. . . the runaway process leads to accelerating increase in L. The shrinkage in the core
leads to the envelope inflating, increasing R so quickly that T eff in fact continues to decrease.
These inflating stars are Red Giants, accelerating up the Red Giant Branch for about
0.5Gyr.

The position of the RGB depends slightly on metallicity: metal-rich stars have larger at-
mospheric κ, hence a thinner photosphere (recall the bottom of the photosphere is defined by
τ = 2/3 ∼

∫
κρ ds), and hence lower T eff.

The atmospheres are sometimes cool enough for grains such as silicates to condense. The
large R, low g and high L are sufficient to blow away about 0.3M� on the RGB.
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For most of a star’s life its nuclear products are stuck in the radiative zone, unable to mix
with outer layers, but as the outer layers decrease in temperature the base of the convective
zone eventually reaches enriched regions and dredges up the nuclear products. Atmospheric
He abundance increases up the RGB.

5.3.2 Helium Flash

At the tip of the RGB, core P and T are sufficient (108K) to begin 4He fusion by the triple-alpha
process in the degenerate core. This proceeds differently to triple-alpha fusion in very big main
sequence stars where the core is not degenerate, as Pd of a degenerate gas is independent of T .
As such, the energy released from 3α fusion goes entirely to raising T , and because ε ∝ T 40,
the fusion rate increases rapidly, leading to a runaway Helium Flash at the TRGB.

5.3.3 Horizontal Branch

It is difficult to know what happens at this sudden juncture, as He flashes have never been
observed; the energy released by the flash is probably absorbed to lift the degeneracy of the
core (as well as raise the temperature of the rest of the star), at which point the core expands
like a more regular gas; the envelope thus shrinks. Now, the star has a non-degenerate He
core, in which 4He fusion proceeds stably, surrounded by a 1H burning shell. 4He fusion is less
efficient than 1H fusion, and the 1H fusion takes place in a shell which is less dense than it was
on the SGB. L therefore decreases, but the energy released by the flash, combined with the
decrease in R, increases T eff, so the star moves down and left onto the Horizontal Branch.

For stars with initial M ≥ 2M�, their cores exceed the Schönberg-Chandrasekhar limit,
collapse, and it gets hot enough for triple-alpha fusion before the He core ever becomes fully
degenerate. They never have a He flash, casually going from SGB onto HB.

The HB is similar to the SGB, but the He core is now burning rather than inert and so
L is higher; an inert, isothermal, degenerate inner core consisting of 12C and 16O forms once
the core 4He fuel is exhausted. For M < 8M�, the 12C /16O will never undergo fusion. Stars
slowly move rightwards as their atmospheres expand and T eff decreases. However, the HB lasts
0.01 as long as SGB, as there is less 4He , 4He fusion is quicker, and it releases less energy.

5.3.4 Asymptotic Giant Branch

Analogous to the SGB, there is now an inert, degenerate core and a 4He burning shell around it.
The 4He burning dumps 12C /16O onto the core, causing it to contract, heat, increase burning
speed, etc. The outer layers expand as L rises, reducing T eff and forming the Asymptotic
Giant Branch, analogous to the RGB. The reduced T eff increases κ, increasing convection,
and causing a second dredge-up, further increasing the 4He content of the atmosphere, as well
as 12C ,16O , and s-process elements such as 99Tc created amidst 4He fusion.

The fusion of 1H and 4He in two different shells is complicated; sometimes they alternate
which is the most active. This leads to Thermal Pulsation; this region is the TP-AGB.
Much mass loss occurs on this stage, more than on the RGB, and the pulsations compound
this, leading to a superwind at 10-15km s−1. The outer layers of the star are blown away,
revealing inner layers progressively close to the core, with higher T eff – the star moves left. The
wind now becomes tenuous but much faster, crashing into the slower wind from earlier and
creating planetary nebulae. Planetary nebulae are further lit up by light from the remainder
of the star, which no longer does fusion and is held up by electron degeneracy – White Dwarfs.
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5.4 White Dwarfs

White dwarfs consist mostly of their C/O core, but have helium and hydrogen blankets: due
to high g, white dwarfs are highly stratified.

With no fusion, WDs are supported by electron4 degeneracy pressure (see Section 4.3).
If the mass of a WD increases (e.g. due to another star dumping matter onto it) above the
Chandrasekhar limit of 1.44M�, electron degeneracy pressure is unable to support it and it
collapses into a neutron star, releasing a Type Ia supernova.

As there is no fusion source remaining, WDs simply radiate away their thermal energy,
continuously decreasing in T eff and L, and hence moving down and right over a period at least
as long as MS. Electrons can have very high momenta in the degenerate core, and conduction
becomes such an efficient energy transport mechanism that the WD is almost isothermal,
though it is covered by the non-degenerate H/He blankets, slowing the cooling process. WDs
take about 10Gyr to cool down to 3kK, explaining why the WD luminosity distribution drops
off suddenly at around 10−4L�.

5.5 M > 8M� Post-MS

The differences at this boundary are that T becomes high enough for 12C /16O burning (>
11M� burn everything up to Fe), and the high ε causes strong winds and high mass loss even
on the MS.

As the core repeatedly runs out of a fuel, collapses causing envelope expansion and T eff ↓,
increases its T , begins burning a new fuel, and increases T eff ↑ again, the star’s luminosity
increases but not by much (there is a lot of envelope in the way!). The star thus simply
zigzags bluewards and redwards on the HR diagram, leading to blue supergiants and red
supergiants. More massive stars are able to fuse heavier elements and so zigzag more times.

5.5.1 Stellar Winds

Interactions with previously-blown off matter can cause wind-blown nebulae. These exhibit P
Cygni line profiles for UV lines of highly ionised species like C IV. The profiles show maximum
velocities5 of up to 3× 106m s−1.

The winds are driven by line absorption and re-emission. The radial momentum transferred
by a photon of frequency νa which is absorbed is hνa/c. When the photon is re-emitted
(potentially at a different frequency), the direction is random and so the average momentum
transferred in the emission is 0.

The mass loss depends on the metallicity: higher metallicity winds can absorb photons
at a more diverse range of wavelengths and hence more momentum gets transferred to them.
Further, at lower T , κ is higher leading to greater mass loss from an A giant than an O giant
of the same luminosity.

4Nuclei are still there of course, but as Pd ∝ m−8/3, they don’t contribute much to the pressure
5The maximum velocity is calculated from a P Cygni profile based on the wavelength emitted by the gas

flying directly towards us, λmin, and the wavelength emitted by the gas flying tangentially (which gives the
redshift of the star itself), λstar. The redshifts of the approaching gas and of the star itself are calculated, and
their velocities subtracted.
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5.5.2 Wolf-Rayet and Luminous Blue Variable Stars

Stars with 25M� < M < 40M� are so luminous while burning 4He that everything except the
core is blown away. They are then surrounded by a tenuous region of gas which isn’t quite part
of the star, but is lit up by the bright core into an emission nebula.

Above 40M�, the mass is lost to stellar winds quicker than by nuclear fusion. These
luminous blue variable stars are often found among OB associations (Section 5.1.3), and
lose mass too quickly to ever zigzag and have RSGs phases

5.6 Supernovae

5.6.1 Type Ia

When a CO white dwarf is in a binary system, it may accrete matter from its companion until
it approaches the Chandrasekhar Limit. Before reaching this limit6, the temperature reaches
12C fusion temperatures, and the WD effectively undergoes a “carbon flash”, which causes the
WD to violently tear apart (deflagrate), leaving nothing behind but a remnant. Ia supernovae
are decent standard candles, producing light from the decay of 56Ni and then 56Co.

5.6.2 Types Ib, Ic, II (Core-Collapse)

Stars with M > 11M� develop an Fe core with a 28Si-burning shell around it for about a
day. The core is supported by electron degeneracy pressure; if any Fe does burn, it does not
contribute to keeping the core up. When the Chandrasekhar mass is exceeded, the gravity
becomes too strong and the core contracts. 28Si-burning temperatures are high enough to
photofission nuclei, leading to a soup of nucleons; as contraction continues and pressure rises,
inverse β decay (p+ + e– −−→ n + νe) occurs, releasing neutrons and neutrinos.7

The core continues to collapse until the density is high enough for the neutrons to become
degenerate. Still having inward momentum, the neutrons fall a bit too far in before quickly
bouncing back outwards. This generates a shockwave, which (after stalling slightly) shunts
material outwards and generates the core-collapse supernova.

Just after the bounce, but before the shock fully gets going, matter accretes onto the core. If
the ZAMS mass of the star is above a certain limit (∼ 25M� perhaps), even neutron degeneracy
pressure is insufficient and the core collapses into a black hole.

The rapid neutron fluxes generated by photofission, inverse β decay, and the explosion
itself, cause r-process nucleosynthesis within the inner layers of the star (up to about the O/Ne
layers). The decay of 56Ni (the most abundant r-process product) and 56Co (the decay product)
create the light curve of the core-collapse supernovae as well. Due to their different half-lives,
the decay of different nuclei dominate the light curve at different times.

6The core mass reaches about 0.99 of the Chandrasekhar mass – the WD narrowly avoids collapsing into a
neutron star

7A similar process occurs if 8M� < M < 11M�, but with O/Ne cores supported by electron degeneracy
pressure. The inverse β decay stuff occurs before the star has a chance to start fusing heavier elements.
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A Useful Tables

A.1 Mean Molecular Weights

µ =
4

6X + Y + 2

Substance µ

Pure ionised hydrogen 0.5
Sun (X = 0.75, Y = 0.235) 0.6

Pure HI 1
Pure He III 4/3

A.2 Temperatures for Fusion Processes

Fuel T/106K

D 1
H (pp) 10

Sun 15
H (CNO) 20

He 100
C 600
O 1000

Si, s-process 2000

A.3 Timings for a 1M� Star

Region of HRD Timescale/yr

HT 50Myr (≈ τKH)
MS 10Gyr

SGB 2Gyr
RGB 0.5Gyr
HB 0.1Gyr

AGB 5Myr
PN 0.1Myr
WD 10Gyr

21


