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1 Fondamentali

1.1 Microcanonical Ensemble

Consider a totally isolated system consisting of a large number of particles; the system’s total
energy E is therefore fixed. The quantum state of the overall system, |ψ⟩, is therefore given by
Ĥ |ψ⟩ = E |ψ⟩ where Ĥ is the system’s Hamiltonian. With N ∼ 1023 particles, there will be
enormous degeneracy, and a real system constantly transitions between degenerate states.

The principle of equal a priori probabilities (PEAP) says that for an isolated system in
equilibrium, all accessible microstates are equally likely. There is no reason why this should
not be true. For the ME, then, if Ω(E) is the number of states |n⟩ which have energy E, then
the probability that the system is in a particular state |m⟩ is

pm =

{
1/Ω(E) if |m⟩ has energy E

0 otherwise

1.1.1 Entropy S

S ≡ kB lnΩ

If two non-interacting systems have Ω1(E1) and Ω2(E2), then because whichever of the Ω1

states system 1 happens to be in, there are Ω2 possible states for system 2, Ωt(E1,E2) =
Ω1(E1)Ω2(E2), and so St(E1,E2) = S1(E1) + S2(E2).

Suppose we do allow the systems to interact, with a fixed total energy Et = E1 + E2; the
systems might be two boxes of gas with a removable divider between them. There are a large
number of initial states of the overall system, but the number of final states is outrageously
larger, because every initial state remains possible when the divider is removed, but there are
now also an enormous number of new states accessible which involve some gas on both sides.
Thus Ωt(Et) ≥ Ω1(E1)Ω2(E2) and St ≥ S1 + S2: a statement of 2LT. There are so many new
possibilities, and PEAP says they are all equally likely, so there is only a vanishing probability
that the system will return to its initial state.

Now E1 ∈ [0,Et] and E2 = Et − E1, so

Ωt(Et) =
∑
E1i

Ω1(E1i)Ω2(Et − E1i) =
∑
E1i

exp

[
S1(E1i) + S2(Et − E1i)

kB

]
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where E1i are the possible energies of system 1, and we assume Et − E1i are possible energies
of system 2. The exponent in the sum peaks very strongly at some particular E1i = E∗, and
that term dominates the sum. This maximum value is found by:

∂

∂E1

[S1(E1) + S2(Et − E1)]

∣∣∣∣
E1=E∗

= 0 ⇒ ∂S1

∂E1

∣∣∣∣
E1=E∗

=
∂S2

∂E2

∣∣∣∣
E2=Et−E∗

where we have de-discretised E1i → E1 (energy levels are usually very close together). Ap-
proximating the sum by its maximum summand,

Ωt(Et) ≈ exp

[
S1(E

∗) + S2(Et − E∗)

kB

]
⇒ St(Et) ≈ S1(E

∗) + S2(E
∗)

1.1.2 Temperature T 1

T
≡ ∂S

∂E

By this definition, the two systems above are most likely to be found in a state where they
have the same T. Bringing together two systems of different temperatures, and allowing δE1

to be transferred from 2 to 1,

δSt =
∂S1

∂E1

δE1 −
∂S2

∂E2

δE1 =

(
1

T1

− 1

T2

)
δE1

and so given that δSt > 0 from 2LT, if we want δE1 > 0 we require T2 > T1. Hot to cold.

1.1.3 Heat Capacity C

C ≡ ∂E

∂T
⇒ ∂S

∂T
=
∂S

∂E

∂E

∂T
=

C

T
⇒ ∆S =

∫
C(T)

T
dT

1.1.4 Volume V and Pressure p

The meaning of V is clear. We can now write S = S(E,V), and hence

dS =
∂S

∂E

∣∣∣∣
V

dE+
∂S

∂V

∣∣∣∣
T

dV =
1

T
dE+

∂S

∂V

∣∣∣∣
E

dV

⇒ dE = T dS−T
∂S

∂V

∣∣∣∣
E

dV

For now, take my word that the second coefficient is −p:

p = T
∂S

∂V
⇒ dE = T dS− p dV (1LT)

Suppose we have two systems which can exchange volume (e.g. movable divider) and energy,
but with fixed totals. The entropy of the system must be maximised at equilibrium, so if a
small amount of energy and/or volume is exchanged the entropy will not change:

0 = dSt = dS1 + dS2 =
1

T1

dE1 +
p1

T1

dV1 +
1

T2

dE2 +
p2

T2

dV2

=

(
1

T1

− 1

T2

)
dE1 +

(
p1

T1

− p2

T2

)
dV1

To hold for any dE1 and dV1, we have that at equilibrium T1 = T2 and then p1 = p2.
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1.2 Canonical Ensemble

Above we fixed a system’s E and could find its T. Alternatively, we may have a system with
fixed T (like a system in contact with a large reservoir at T), and then find its properties.

The total number of microstates of the whole system-reservoir situation is

Ωt(Et) =
∑
|n⟩

Ωr(Et − En) =
∑
|n⟩

exp

(
Sr(Et − En)

kB

)
where En ≪ Et is the energy of the system’s state |n⟩ – note that we are summing over the
states, not the energy levels: we may have Em = En but m ̸= n. Note also that the number of
microstates of the system in state |n⟩ is 1: just |n⟩. Expanding (and cutting down on ink),

Ωt =
∑
n

exp

(
Sr(Et)− En ∂Sr/∂E

kB

)
= Ωr(Et)

∑
n

e−En/kBT

From PEAP, each of these Ωt states is equally likely. We can see that each system-state |n⟩
contributes Ωr(Et)e

−En/kBT of these, so the probability of the system being in state |n⟩ is

pn =
1

Z
e−En/kBT (Boltzmann)

where Z ≡
∑

m e
−Em/kBT is the partition function, summing over all microstates, is like a

normalisation. Two independent systems at a common temperature with partition functions
Z1 and Z2 can be assigned an overall partition function Z:

Z =
∑
m

∑
n

e−(Em/kBT)−(En/kBT) =
∑
m

e−(Em/kBT)
∑
n

e−(En/kBT) = Z1Z2

1.2.1 Energy Fluctuations

We define β = (kBT)−1, and hence pn = e−βEn/Z and Z =
∑
e−βEm . The average energy of

the system, which fluctuates in the canonical ensemble, is

⟨E⟩ =
∑
n

En
e−βEn

Z
= − 1

Z

∂Z

∂β
= −∂ lnZ

∂β〈
E2
〉
=
∑
n

E2
n

e−βEn

Z
=

1

Z

∂2Z

∂β2

⇒ ∆E2 ≡
〈
E2
〉
− ⟨E⟩2 = 1

Z

∂2Z

∂β2
− 1

Z2

∂Z

∂β

∂Z

∂β
=

∂

∂β

[
1

Z

∂Z

∂β

]
=
∂2 lnZ

∂β2
= −∂ ⟨E⟩

∂β

The heat capacity C is defined slightly differently, as d ⟨E⟩/dT ; hence ∆E2 = kBT
2C.

Because both E and C are both proportional to N, we have

∆E

E
∝

√
C

E
∝ 1√

N

So in the thermodynamic limit N → ∞, the energy probability distribution is strongly peaked
around ⟨E⟩ and can be treated as fixed – the canonical ensemble then tends to the microcanon-
ical ensemble with E = ⟨E⟩.
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1.2.2 Entropy

The ensemble trick: consider a large ensemble of a large number W copies of whatever system
is in question; suppose the probability distribution is pn for each system to be in microstate
|n⟩, so pnW of the copies are in the microstate |n⟩. The number of microstates of the whole
ensemble is then:

Ω =
W !∏

n ([pnW ]!)
⇒ Sens = kB ln(W !)− kB

∑
n

ln ([pnW ]!) = −kBW
∑
n

pn ln pn

which we evaluate using Stirling’s approximation and
∑

n pn = 1. Now because S is extensive,
we have that the entropy of a single system must then be

S = −kB
∑
n

pn ln pn (Gibbs)

Note that this was derived without assuming any particular probability distribution, so is
general. For the microcanonical ensemble, we have

S(E) = −kB
∑

n|En=E

pn ln

(
1

Ω(E)

)
− kB

∑
m|Em ̸=E

0 ln 0 = kB lnΩ(E)

as before. For the canonical ensemble we instead have

S = −kB
∑
n

pn(−βEn − lnZ) =
kBβ

Z

∑
n

e−βEnEn + kB lnZ = kB
∂

∂T
(T lnZ)

1.2.3 Free Energy F = E−TS

The Helmholtz free energy is a Legendre transform of E, and usefully, F = −kBT lnZ :

F = −∂ lnZ
∂β

− kBT
∂

∂T
(T lnZ) = kBT

2∂ lnZ

∂T
− kBT

∂

∂T
(T lnZ) = −kBT lnZ

1.3 Grand Canonical Ensemble

Consider a system whose numbers of particles N can change, so S = S(E,V,N):

dS =
1

T
dE+

p

T
dV − µ

T
dN where µ = −T

∂S

∂N

∣∣∣∣
E,V

Extending the argument in §1.1.4, but now allowing the systems to exchange particles too (S
must now be stationary in another dimension, N), we find that in equilibrium

0 =

(
1

T1

− 1

T2

)
dE1 +

(
p1

T1

− p2

T2

)
dV1 +

(
−µ1

T1

+
µ2

T2

)
dN1

so in equilibrium T1 = T2, then p1 = p2 and µ1 = µ2.
Rearranging for E gives an extension of the first law (and motivates the − sign)

dE = T dS− p dV + µ dN
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and hence µ = ∂E/∂N , as could also be derived from its definition with some calculus.
In the Grand Canonical Ensemble, the system is connected to a reservoir of fixed T and µ

and large E and N, and the system’s E and N may both fluctuate; the system’s microstates
|n⟩ each have their own energy En and a particle number Nn. The total number of microstates
of the system+reservoir is:

Ωt(Et,Nt) =
∑
n

Ωr(Et − En,Nt −Nn) =
∑
n

exp

(
Sr(Et − En,Nt −Nn)

kB

)
=
∑
n

exp

(
Sr(Et,Nt)− En ∂Sr/∂E −Nn ∂Sr/∂N

kB

)
= Ωr(Et,Nt)

∑
n

e−En/kBT+µNn/kBT = Ωr(Et,Nt)
∑
n

e−β(En−µNn)

⇒ pn =
1

Z e−β(En−µNn) where Z =
∑
m

e−β(Em−µNm) =
∞∑

N=0

eβµNZN

involving the grand canonical partition function; the last expression partitions the sum into
terms with equal N and sums over those. We find

S = kB
∂

∂T
(T lnZ) ⟨N⟩ = 1

β

∂ lnZ
∂µ

∣∣∣∣
T

⟨E⟩ − µ ⟨N⟩ = −∂ lnZ
∂β

∆N2 =
1

β2

∂2 lnZ
∂µ2

=
1

β

∂ ⟨N⟩
∂µ

∣∣∣∣
T

As with ⟨E⟩ above, apparently ∆N/ ⟨N⟩ ∝ N−1/2, so in the thermodynamic limit ⟨N⟩ → N.
We define the grand canonical potential by

Φ = F− µN = E−TS− µN = −∂ lnZ
∂β

− kBT
∂

∂T
(T lnZ) = −kBT lnZ

⇒ dΦ = −SdT− pdV −Ndµ ⇒ Φ = Φ(T,V,µ) and
∂Φ

∂V

∣∣∣∣
T,µ

= −p

From its definition, Φ is an extensive quantity, whereas the variables it depends on are all
intensive except for V. This implies that Φ(T,V,µ) ∝ V, and from its volume derivative we
see that the proportionality constant must be −p(T,µ). Hence Φ(T,V,µ) = −p(T,µ)V.

2 Classical Gases

Everything can be derived from Z, the sum over all states of e−βE. For a classical monatomic
particle, its “state” is its position (q) and momentum (p), and hence for one particle:

Z1 =
1

h3

∫
d3p

∫
d3q e−βE(p,q)

where the h3 (necessary for dimensional reasons) is descended from ⟨p|q⟩ = h−1/2e−ipq/ℏ.
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2.1 Ideal Gas

An ideal gas has N non-interacting particles, volume V, and E = p2/2m within V or E = ∞
outside. Hence the canonical partition function for the whole gas is

Z =

(
V

h3

∫
e−β|p|2/2md3p

)N

=

(
V

h3

(√
2mπ

β

)3
)N

=

(
V

λ3

)N

where λ =
h√

2mπkBT

λ is the de Broglie wavelength of a particle with kinetic energy πkBT; note that thermody-
namically its value depends only on T; through λ, Z ∝ T3N/2 ∝ β−3N/2. There should also be
a factor of N! on the denominator, to correct for the indistinguishability of the particles.

The free energy is F = −kBT lnZ and the pressure is − ∂F/∂V , and hence

p = kBT
∂

∂V

[
N ln

(
V

λ3

)
− lnN!

]
=

NkBT

V
(Ideal Gas)

The energy is given by

E = − ∂

∂β
lnZ = − ∂

∂β

(
−3N

2
ln β +N lnV + const.

)
=

3

2
NkBT ⇒ CV =

3

2
NkB

The entropy is:

S =
∂

∂T
(kBT lnZ) = kB lnZ+ kBT

∂ lnZ

∂T
= NkB

[
5

2
+ ln

(
V

Nλ3

)]
(ST)

Note that if the N! were not included we would have instead S = NkB[3/2 + ln (V/λ3)], which
is not extensive in its dependence on V. ST gives an extensive S.

Alternatively, we can derive stuff using the grand canonical ensemble instead:

Z =
∞∑

N=0

eβµNZN =
∞∑

N=0

1

N!

(
eβµV

λ3

)N

= exp

(
eβµV

λ3

)
⇒ N ≈ ⟨N⟩ = 1

β

∂ lnZ
∂µ

=
eβµV

λ3
⇒ µ = kBT ln

(
Nλ3

V

)
< 0

⇒ pV = −Φ = kBT lnZ = kBT
eβµV

λ3
= NkBT

2.1.1 Maxwell Distribution

Doing the partition integral for one particle and converting to velocity,

Z1 =
1

h3

∫
d3p

∫
d3qe−β|p|2/2m ∝

∫
d3ve−mv2/2kBT ∝

∫ ∞

0

v2e−mv2/2kBT dv

As Z1 is proportional to the sum over states of the probabilities of occupation of those states,
we deduce that the (normalised) velocity distribution of a gas particle is

f(v) =

(
m

2πkBT

)3/2

4πv2e−mv2/2kBT

From which we find that ⟨v2⟩ = 3kBT/m, and hence ⟨E⟩ = m ⟨v2⟩ /2 = 3kBT/2, as expected
from the above result for the energy of an ideal gas.
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2.1.2 Classical Diatomic Gases

Diatomic molecules have rotational and vibrational degrees of freedom which modify their
(as yet solely translational) partition function. Assuming their translational, rotational, and
vibrational motions are independent, we can write Z1 = ZtZrZv; we now deduce the latters.

Rotational. Modelling the molecule as a thin rigid rod of moment of inertia I,

L =
I

2

(
θ̇2 + sin2 θϕ̇2

)
⇒ pθ = Iθ̇; pϕ = I sin2 θϕ̇

⇒ E(pθ, pϕ, θ, ϕ) = pθθ̇ + pϕϕ̇− L =
p2θ
2I

+
p2ϕ

2I sin2 θ

⇒ Zr =
1

h2

∫
dθdϕ

∫
dpθ dpϕ e

−βp2θ/2Ie−βp2ϕ/2I sin
2 θ =

2π

h2

∫ π

0

dθ

√
2πI

β

√
2πI sin2 θ

β
=

2IkBT

ℏ2

⇒ ⟨Er⟩ = −∂ lnZr

∂β
= kBT

as might be expected from equipartition since there are two DoF associated with rotation.
Note the factor in front of the integral is 1/h2 as there are two dimensions of motion.

Vibrational. Modelling the molecule as a spring of frequency ω whose atoms deviate from
equilibrium by a distance ζ, we have

E(ζ, pζ) =
p2ζ
2m

+
1

2
mω2ζ2

⇒ Zv =
1

h

∫
dpζe

−βp2ζ/2m

∫
dζe−βmω2ζ2/2 =

1

h

√
2mπ

β

√
2π

βmω2
=
kBT

ℏω

⇒ ⟨Ev⟩ = −∂ lnZv

∂β
= kBT

The unexpected second degree of freedom comes from the potential energy of the spring.
The overall partition function for a diatomic molecule is thus

Z1 = ZtZrZv =
V

λ3
2IkBT

ℏ2
kBT ∝ β−7/2 ⇒ E = −∂ lnZ

∂β
=

7

2β
=

7

2
kBT

For a gas of N diatomic molecules, the partition function again scales to the power of N, hence
the energy becomes 7

2
NkBT and the specific heat 7

2
NkB. However, at lower temperatures some

degrees of freedom are “frozen out” and so do not contribute to this (see §3.1.3).

2.2 Interacting Gases

At low N/V, any gas behaves like an ideal gas; more generally

p

kBT
=

N

V
+B2(T)

(
N

V

)2

+ . . .

where Bi(T) are “virial coefficients”. The Bi can be computed from the potential U(r) between
two atoms separated by a distance r. The partition function is:

Z =
1

N!

1

h3N

∫ ( N∏
i=1

d3pi d
3ri

)
e−β(

∑
j p

2
j/2m+

∑
j,k<j U(rjk))
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=
1

N!

1

h3N

[
N∏
i=1

∫
d3pi e

−βp2i /2m

][∫ ( N∏
i=1

d3ri

)
e−β

∑
j,k<j U(rjk)

]

=
1

N!λ3N

∫ ( N∏
i=1

d3ri

)
e−β

∑
j,k<j U(rjk)

which is a hard integral and doesn’t separate. Defining the Mayer f function

f(r) ≡ e−βU(r) − 1; fij ≡ f(rij)

and noting that f(∞) → 0, we can approximate the integral:

Z =
1

N!λ3N

∫ ( N∏
i=1

d3ri

)
N∏

j,k<j

(1 + fjk) ≈
1

N!λ3N

∫ ( N∏
i=1

d3ri

)(
1 +

∑
j,k<j

fjk

)

=
1

N!λ3N

[
VN +

∑
j,k<j

∫ ( N∏
i=1

d3ri

)
fjk

]

=
1

N!λ3N

[
VN +VN−2

∑
j,k<j

∫
d3rj d

3rk f(rjk)

]
=

1

N!λ3N

[
VN +VN−1

≈N2/2︷︸︸︷∑
j,k<j

I︷ ︸︸ ︷∫
d3r f(r)

]
=

1

N!λ3N

[
VN +VN−1N

2

2
I

]
=

VN

N!λ3N

[
1 +

N2

2V
I

]
≈ VN

N!λ3N

(
1 +

N

2V
I

)N

where the “massaging” at the end will make things properly extensive. To find the equation
of state from this, note that F = −kBT lnZ, and dF = −pdV − SdT so

p = − ∂F

∂V

∣∣∣∣
T

= kBT
∂ lnZ

∂V
= kBT

[
N

V
− I

2

(
N

V

)2

+O
(
N

V

)3
]

Hence the second virial coefficient is B2(T) = −1
2

∫
d3r
(
e−βU(r) − 1

)
.

3 Quantum Gases

Back to non-interacting particles. A single particle has a partition function Z1 =
∑

m e
−βEm ,

where the sum is over all states of the system. It will be more convenient to approximate this
sum as an integral over energy, so to do the sum over all states we need to know how many
states have energy in the range [E,E+ dE] – the density of states g(E).

Take a cubic volume V = L3; the states are something like ψk ∝ exp(ik · r), where k takes
the values 2πn/L with n ∈ N3, and hence every state takes up a volume (2π)3/V in k-space.
The number of states with k = |k| ∈ [k, k + dk] is then

gk(k) dk =
4πk2 dk

8π3/V
=

V

2π2
k2 dk ⇒ gk(k) =

V

2π2
k2

For non-relativistic systems, we have E = (ℏ2/2m)k2 ⇒ k =
√
2mE/ℏ2. Hence

g(E) = gk(k)
dk

dE
=

V

2π2

(
2mE

ℏ2

)
1

2

√
2m

Eℏ2
=

V

4π2

(
2m

ℏ2

)3/2

E1/2
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For relativistic systems, we instead have E =
√
ℏ2k2c2 +m2c4 ⇒ k = 1

ℏc

√
E2 −m2c4, so

g(E) =
V

2π2

(
E2 −m2c4

ℏ2c2

)
1

ℏc
E√

E2 −m2c4
=

V

2π2ℏ3c3
E
√
E2 −m2c4 → V

2π2ℏ3c3
E2

where the limit at the end is that of zero mass.

3.1 Warmup Systems

3.1.1 Photons AKA Blackbody Radiation

Traditionally we work with ω = E/ℏ rather than E. A state can have any number of photons,
so consider the partial canonical partition function for one particular pair of ω and k:

Zω,k =
∞∑

N=0

e−βNℏω =
1

1− e−βℏω

For a given ω, there are gω(ω) dω = 2g(E) dE different possible values of k and polarisation
(there are 2 transverse polarisation states in each k-state), each of which have the same Zω,k,
so the partition function for the frequency ω is then

Zω = (Zω,k)
gω(ω)dω

which looks less silly when lned. The overall partition function Z would be a product of all the
Zω (assuming photons of different frequencies don’t interact), but that would involve a product
integral (which is apparently a thing). Instead, consider

lnZ =

∫ ∞

ω=0

lnZω = −
∫ ∞

0

ln
(
1− e−βℏω)gω(ω) dω

Substituting for g(ω)dω = 2g(E)dE in the massless relativistic case,

lnZ = −
∫ ∞

0

ln
(
1− e−βℏω) 2V

2π2ℏ3c3
(ℏω)2d(ℏω) = − V

π2c3

∫ ∞

0

ω2 ln
(
1− e−βℏω)dω

With this, we can calculate stuff like the energy

E = −∂ lnZ
∂β

=
V

π2c3

∫ ∞

0

ω2ℏωe−βℏω

1− e−βℏω dω =

∫ ∞

0

Vℏ
π2c3

ω3 dω

eβℏω − 1
= V

a︷ ︸︸ ︷
π2k4B
15c3ℏ3

T4 = VaT4

Hence the heat capacity CV ≡ dE/dT
∣∣
V

= 4VaT3. From an intermediate stage above we
can identify the spectral energy density Eω(ω):

Eω(ω) =
Vℏ
π2c3

ω3

eβℏω − 1
(Planck)

We can also calculate the free energy by integrating by parts:

F = −kBT lnZ = kBT
V

π2c3

∫ ∞

0

ω2 ln
(
1− e−βℏω) dω = −E

3

from which we can calculate the pressure and entropy, as dF = −pdV − SdT, so:

p = − ∂F

∂V

∣∣∣∣
T

=
aT4

3
=

E

3V
S = − ∂F

∂T

∣∣∣∣
V

=
4V

3
aT3 =

4E

3T

9



3.1.2 Phonons

Sound waves propagating through solids can be treated as massless gas particles with energy
ℏω. The density of states is the same as photons except with c replaced by c (the speed of
sound in the material) and the 2 polarisation states replaced by 3 (longitudinal too):

gω(ω) =
3V

2π2c3
ω2

Also, there is a maximum frequency ωD. The total number of phonons is apparently equal to
the number of degrees of freedom of the system, which is 3N, so

3N =

∫ ωD

0

3V

2π2c3
ω2 dω =

V

2π2c3
ω3
D ⇒ ωD =

(
6π2N

V

)1/3

c

As with photons, the number of phonons in one state is unlimited, so we can modify the
photon expressions with something like c3 → 2c3/3 and changing the integrals’ upper bounds:

E =
3Vℏ
2π2c3

∫ ωD

0

ω3 dω

eβℏω − 1
=

3Vℏ
2π2c3

(
1

βℏ

)4 ∫ ℏωD/kBT

0

x3 dx

ex − 1
= V

3k4BT
4

2π2c3ℏ3

∫ TD/T

0

x3 dx

ex − 1

where we have substituted the Debye temperature TD = ℏωD/kB. The proper integral has no
analytic solution, but the limits of high and low temperature are analytic.

For T ≫ TD, the integral is between 0 and a small number, so x is never very big and
ex − 1 ≈ 1 + x− 1 = x. Thus the integral is of x2 and we have

E(T ≫ TD) ≈ V
k4BT

4

2π2c3ℏ3

(
TD

T

)3

⇒ CV ≈ V
k4B

2π2c3ℏ3
T3

D = 3NkB

For T ≪ TD, the integral tends to the improper value of π4/15, so

E(T ≪ TD) ≈ V
π2k4BT

4

10c3ℏ3
⇒ CV ≈ V

2π2k4BT
3

5c3ℏ3
=

12π4

5
NkB

(
T

TD

)3

3.1.3 Quantum Diatomic Gases

The Classical analysis of diatomic gases, where the molecule was modelled as a classical vi-
brating rod, gave a heat capacity of 7

2
NkB, but this is only observed at high T.

Rotational. Rather than modelling the molecule as a rigid rod, we note that the energy
levels are quantised like

Ej =
ℏ2

2I
j(j + 1) j = 0, 1, 2, . . . gj = 2j + 1

and so the rotational partition function is actually

Zr =
∞∑
j=0

(2j + 1)e−βℏ2j(j+1)/2I

At high temperatures β ≪ ℏ2/2I, this can be approximated by an integral

Zr(β ≪ ℏ2/2I) →
∫ ∞

0

(2j + 1)e−βℏ2j(j+1)/2I dj =
2I

βℏ2

10



in agreement with the Classical result. However, at low temperatures the contributions to the
partition function of all but the j = 0 states will be exponentially suppressed, and so Zr → 1,
Er → 0, and CV,r → 0. We also see that modes with low I are also exponentially suppressed,
justifying the neglect of axial rotation modes.

Vibrational. En = ℏω(n+ 1/2), so

Zv =
∞∑
n=0

e−βℏω(n+1/2) = e−βℏω/2
∞∑
n=0

e−βℏωn =
e−βℏω/2

1− e−βℏω =
1

2 sinh (βℏω/2)

The high-T limit gives Zv → 1/βℏω = kBT/ℏω, but the low temperature limit gives Zv ≈
e−βℏω/2, Ev ≈ 1

2
ℏωe−βℏω/2 ≈ 1

2
ℏω (the energy of the ground state), and hence CV,v → 0.

In both cases, we see that the degrees of freedom “freeze out” at lower temperatures, as
they relax into their ground states and stop contributing to CV.

3.2 Non-Relativistic Bosons

Any number of bosons can fit into a state |r⟩, so for a given state the GCPF is

Z |r⟩ =
∞∑

Nr=0

e−βNr(Er−µ) =
1

1− e−β(Er−µ)

where we have assumed Er > µ∀ |r⟩, and hence that µ < 0. The overall GCPF is then:

Z =
∏
|r⟩

1

1− e−β(Er−µ)

from which we can calculate the average number of particles in total, from which the number
in each state:

⟨N⟩ =1

β

∂ lnZ
∂µ

= − 1

β

∂

∂µ

∑
|r⟩

ln
(
1− e−β(Er−µ)

)
=
∑
|r⟩

e−β(Er−µ)

1− e−β(Er−µ)
=
∑
|r⟩

1

eβ(Er−µ) − 1

⇒
〈
N|r⟩

〉
=

1

eβ(Er−µ) − 1
(BE)

where we note that this distribution is potentially unbounded. Note also that the degeneracy
of the state |r⟩ has not been mentioned; there are often many states with the same energy
Er, each of which would have the above number of particles in it. Hence the total number of
particles and total energy are

N =

∫ ∞

0

dE g(E)
1

z−1eβE − 1
=

V

4π2

(
2m

ℏ2

)3/2 ∫ ∞

0

E1/2

z−1eβE − 1
dE

= V

(
2mπkBT

h2

)3/2

︸ ︷︷ ︸
1/λ3

2√
π

∫ ∞

0

x1/2

z−1ex − 1
dx︸ ︷︷ ︸

Li3/2(z)

⇒ N

V
=

1

λ3
Li3/2(z)

E =

∫ ∞

0

dE′ g(E′)
E′

z−1eβE′ − 1
=

V

4π2

(
2m

ℏ2

)3/2 ∫ ∞

0

E′3/2

z−1eβE′ − 1
dE′

11



= V

(
2mπkBT

h2

)3/2

︸ ︷︷ ︸
1/λ3

3

2β

4

3
√
π

∫ ∞

0

x3/2

z−1ex − 1
dx︸ ︷︷ ︸

Li5/2(z)

⇒ E

V
=

3

2β

1

λ3
Li5/2(z)

where the fugacity z ≡ eβµ ∈ [0, 1] (as µ < 0), and the polylogarithm functions Lin(z) are:

Lin(z) ≡
1

Γ(n)

∫ ∞

0

xn−1

z−1ex − 1
dx =

∞∑
m=1

zm

mn

Hence Lin(z) are monotonically increasing functions, and Lin(1) = ζ(n). Recall also that

pV = −Φ =
1

β
lnZ = − 1

β

∑
|r⟩

ln
(
1− ze−βEr

)
= − 1

β

∫ ∞

0

dE g(E) ln
(
1− ze−βE

)
=

2

3

∫ ∞

0

dE g(E)
Eze−βE

1− ze−βE
=

2

3
E

where to go from the first line to the second we have used the fact that g(E) ∝ E1/2.

3.2.1 High T

In the limit of small z, using the sum form of Li3/2(z) we have

N

V
=

1

λ3

(
z +

z2

2
√
2
+O(z3)

)
from which we see that for fixed N and V, the limit of small z means small λ and hence high
T. One might have thought that small z = eβµ would mean low T, but µ depends on T too.

We also have

E

V
=

3

2β

1

λ3

(
z +

z2

4
√
2
+O(z3)

)
=

3

2β

1

λ3
z

(
1 +

z

4
√
2
+O(z2)

)
and pV = 2

3
E. To obtain the equation of state we require E in terms of N, so we must

eliminate z. Taking the expression for N/V, we can sort of invert it:

z =
Nλ3

V
− z2

2
√
2
+ · · · = Nλ3

V
− 1

2
√
2

(
Nλ3

V
− z2

2
√
2

)2

+ · · · ≈ Nλ3

V

[
1− 1

2
√
2

Nλ3

V
+ . . .

]
where in the second equality we have substituted in for z using the first equality, Matryoshka-
ing it until we get terms to the right order in Nλ3/V and high enough order in z to be able to
ignore. Using pV = 2

3
E and substituting z, we find

pV =
2

3

3

2β

V

λ3
Nλ3

V

[
1− 1

2
√
2

Nλ3

V
+ . . .

]
︸ ︷︷ ︸

z

(
1 +

1

4
√
2

Nλ3

V

[
1− 1

2
√
2

Nλ3

V
+ . . .

]
︸ ︷︷ ︸

z

+ . . .

)

= NkBT

(
1− 1

4
√
2

Nλ3

V
+ . . .

)
which as expected for a high-temperature gas, is the ideal gas law plus a second virial coefficient,
which in this case reduces the pressure.
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3.2.2 Low T & Bose-Einstein Condensates

Recall that N/V = Li3/2(z)/λ
3, and µ < 0 so z ∈ [0, 1]. Suppose we decrease T towards 0,

at fixed N and V. z then increases from its small value up towards its maximum value of 1.
Li3/2(z) is monotonically increasing and hence does not exceed Li3/2(1) = ζ(3/2). Suppose z
reaches 1 at a temperature Tc (typically ∼ 10−6K), so that

N

V
=

1

λ3
ζ

(
3

2

)
=

(
2mπkBTc

h2

)3/2

ζ

(
3

2

)
⇒ Tc =

h2

2mπkB

(
1

ζ(3/2)

N

V

)2/3

Decreasing the temperature below Tc appears to reduce N, as Li3/2 has “saturated” and can
no longer compensate. In fact this is because the density of states, proportional to E1/2

accidentally excludes the ground state, which has E0 = 0 and hence ⟨N0⟩ = z
1−z

. Unless z
is really close to 1, N0 is only a few; for z = 0.9, N0 = 9, which is not much compared to
the ∼ 1023 particles in other states! However as z approaches 1, N0 can reach macroscopic
values and hence its exclusion becomes irresponsible. The ground state was the only state not
included in the earlier calculation of N/V, so we should modify it to

N =
V

λ3
Li3/2(z) +

z

1− z

T can now get low without there being changes in N or V, as although reducing T increases λ
(decreasing the first term which is bounded by Vζ(3/2)/λ3), it also pushes z arbitrarily close
to 1 so the second term can pick up the slack to keep N constant. What is happening is that
as T falls, the bosons all start piling into the ground state, giving ∼ 1023 particles in a single
quantum state! The fraction of particles in the ground state for T < Tc is

N0

N
=

1

N

z

1− z
= 1− V

Nλ3
Li3/2(z) = 1− V

Nλ3
ζ

(
3

2

)
= 1−

(
T

Tc

)3/2

which gets closer and closer to 1 on lowering the temperature. For T > Tc this is invalid as in
this regime Li3/2(z) ̸= ζ

(
3
2

)
.

The equation of state can now be updated to include the ground state at z ≲ 1:

p =
2

3

E

V
− 1

βV
ln(1− z) ≈ 2

3

E

V
≈ kBT

λ3
ζ

(
5

2

)
where the first approximation derives from the second term being much smaller than the first
(ln(1− z) does blow up, but only when really close to z = 1), and the second comes from the
fact that Li5/2(z) is about ζ(5/2) when z is quite close to 1. We see that p ∝ T5/2 and is
independent of N/V.

3.2.3 Phase Transition at T = Tc

A phase transition is a discontinuity in a physical observable. Consider the energy again,
neglecting the ground state as above:

E

V
=

3

2

kBT

λ3
Li5/2(z) ⇒ CV

V
=

15

4

kB
λ3

Li5/2(z) +
3

2

kBT

λ3
dLi5/2
dz

dz

dT

For T < Tc, z = 1 and dLi5/2
/
dz = 0. Hence CV = 15

4
kB
λ3 ∝ T3/2. For T > Tc the second

term is non-zero; although CV is continuous its derivative turns out not to be. CV eventually
saturates at 3

2
NkB.
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3.3 Non-Relativistic Fermions

Two fermions cannot occupy the same state, so each fermionic state can have either 0 or 1
particles. The single-state grand partition function is then simply:

Z |r⟩ = e−β(0)(Er−µ) + e−β(1)(Er−µ) = 1 + e−β(Er−µ)

The total grand partition function is then
∏

r Z |r⟩, and hence the number of particles is

⟨N⟩ =1

β

∂ lnZ
∂µ

=
1

β

∂

∂µ

∑
|r⟩

ln
(
1 + e−β(Er−µ)

)
=
∑
|r⟩

e−β(Er−µ)

1 + e−β(Er−µ)
=
∑
|r⟩

1

eβ(Er−µ) + 1

⇒
〈
N|r⟩

〉
=

1

eβ(Er−µ) + 1
(FD)

which is very similar to BE but with a + in the denominator. Note that
〈
N|r⟩

〉
∈ [0, 1],

satisfying Pauli. The density of states can be written

g(E) =
gsVq

4π2

(
2m

ℏ2

)3/2

E1/2

where gs = 2s+ 1 is the spin degeneracy, analogous to the 2 polarisations of photons that can
occupy a single pair of ω and k. For fermions, the integrals become:

N =

∫ ∞

0

dE
g(E)

z−1eβE + 1
E =

∫ ∞

0

dE′ E′g(E′)

z−1eβE′ + 1
pV =

2

3
E

For small z (high T), approximating, eliminating z and substituting E for pV gives:

pV = NkBT

(
1 +

1

4
√
2

Nλ3

gsV
+ . . .

)
with a higher-than-ideal pressure at second order.

3.3.1 T → 0 and Fermi Energy

lim
T→0

1

eβ(E−µ) + 1
= 1−Θ(E− µ) =

{
1 E < µ

0 E > µ

Each fermion settles into the lowest energy state with room, as shown in Figure 1. At T = 0,
µ defines the Fermi Energy EF as the highest occupied energy level:

N =

∫ EF

0

g(E) dE =
gsV

6π2

(
2m

ℏ2

)3/2

E
3/2
F ⇒ EF =

ℏ2

2m

(
6π2

gs

N

V

)2/3

We then define TF ≡ EF/kB and kF ≡
√
2mEF . Still at T = 0, we also have

E =

∫ EF

0

E′g(E′) dE′ =
gsV

4π2

(
2m

ℏ2

)3/2 ∫ EF

0

E′3/2 dE′ =
3

5
NEF ⇒ pV =

2

5
NEF

so even at T = 0, there is some residual (degeneracy) pressure.
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3.3.2 Low T

Figure 1 | Occupation of Fermionic
Energy Levels. In the T → 0 limit,
all states with E < EF are occupied and
all others are unoccupied. For small T
the distribution is smeared out around a
region of size ≈ kBT.

As shown in Figure 1, when T is slightly above 0, the
distribution is smeared out over an energy range of or-
der kBT. This section will necessarily be much less
analytic.

For low T, µ ≈ EF is approximately constant. The
change in the number of particles with T is expected
to be 0:

dN

dT

∣∣∣∣
T≈0

=
d

dT

∣∣∣∣
0

∫ ∞

0

dE
g(E)

eβ(E−µ) + 1

≈ g(EF )

∫ EF+kBT/2

EF−kBT/2

dE
∂

∂T

(
1

eβ(E−EF ) + 1

)
= g(EF )

∫ +

−
dE

E− EF

kBT2

eβ(E−EF )

(eβ(E−EF ) + 1)
2

=
g(EF )

4kBT2

∫ +

−
(E− EF ) sech

2

(
β(E− EF )

2

)
where in the approximation we have used the fact that the only energies whose occupations
will change much will be those within about kBT of EF The final integral is 0 because the first
term in the integrand is odd about E = EF and the second is even.

The calculation of the heat capacity uses similar assumptions:

CV ≡ dE

dT
=

d

dT

∫ ∞

0

Eg(E) dE

eβ(E−µ) + 1

≈
∫ +

−
dE

[
EFg(EF ) +

3

2EF

EFg(EF )(E− EF )

]
∂

∂T

(
1

eβ(E−EF ) + 1

)
=

1

4kBT2

∫ +

−
dE

[
EFg(EF ) +

3

2EF

EFg(EF )(E− EF )

]
(E− EF ) sech

2

(
β(E− EF )

2

)
≈ 1

4kBT2

3g(EF )

2

1

β3

∫ ∞

−∞
x2 sech2

(x
2

)
dx ∼ Tg(EF )

where the first approximation comes from Taylor expanding Eg(E) ∝ E3/2 about EF , the first
term of which roughly cancels by parity, and in the final approximation we have substituted
x = β(E−EF ) and extended the integral because it doesn’t make much difference. This result
makes sense because only fermions within around kBT of EF are going to move when the gas
is heated, of which there are about g(EF )kBT. On heating by ∆T, each of these gains an
energy ∼ kB∆T, so the “active” thermal energy is proportional to g(EF )T∆T, and hence
CV ∝ g(EF )T.

Finally, because N ∝ E
3/2
F , g(EF ) ∝ E

1/2
F , TF ∝ EF , and CV ∝ Tg(EF ), we can write

CV ∼ NkB
T

TF

which is proportional to TE
1/2
F as required, but also proportional to N.

Metal electrons can be modelled as a Fermi gas. Hence a metal’s heat capacity at low T
can be modelled as a combination of electronic and phononic contributions CV = γT+ αT3.
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3.3.3 Paramagnetism

When electrons are in a magnetic field they couple to it and gain an energy1 Es = µBBs where
s = ±1 and µB = eℏ/2m. We then have

N↑

V
=

1

4π2

(
2m

ℏ2

)3/2 ∫ ∞

0

dE
E1/2

eβ(E+µBB−µ) + 1

N↓

V
=

1

4π2

(
2m

ℏ2

)3/2 ∫ ∞

0

dE
E1/2

eβ(E−µBB−µ) + 1

The magnetisation M ≡ − ∂E/∂B . For high T (that is, z ≪ 1), we have∫ ∞

0

dE
E1/2

z−1eβ(E+µBB) + 1
≈ ze−βµBB

β3/2

∫ ∞

0

x1/2e−x dx =

√
π

2

z

β3/2
e−βµBB

⇒ N↑ ≈
V

λ3
ze−βµBB, N↓ ≈

V

λ3
zeβµBB

⇒ N =
2Vz

λ3
cosh (βµBB) ⇒ z =

Nλ3

2V cosh (βµBB)

⇒ E = µBB(N↑ −N↓) ≈ −2µBBVz

λ3
sinh(βµBB) = NµBB tanh (βµBB)

⇒ M ≈ NµB tanh(βµBB)

to first order. The susceptibility χ ≡ ∂M/∂B = Nβµ2
B sech2(βµBB) ∼ T−1: Curie’s Law.

4 Classical Thermodynamics

4.1 Classical Temperature and Energy

4.1.1 The 0th Law

0LT: If A is in equilibrium with B, and B with C, then A is in equilibrium with C.
In Classical Physics there are only macrostates. A system is located by a point in (p,V)-

space. Whether or not two states are in equilibrium thus depends on the pi and Vi. Write this
dependence for two systems A and B as VB = fAB(pA,VA,pB). Suppose B and C are also in
equilibrium, so VB = fCB(pC ,VC ,pB). Thus

fAB(pA,VA,pB) = fCB(pC ,VC ,pB)

Now according to 0LT, this is all equivalent to A and C being in equilibrium – but that
relationship has nothing to do with pB. Thus pB must somehow cancel from the above; that
is to say that there exist functions θi such that θA(pA,VA) = θC(pC ,VC). These functions are
the temperatures, e.g. θC(x, y) = xy/NCkB if system C is an ideal gas of NC particles.

4.1.2 The 1st Law

1LT: The work required to change an isolated system between two states does not depend on
how the work was done.

This suggests another state function E(p,V), where no matter how the work W is done,
∆E = W. For non-isolated systems, another form of energy transfer (called heat, Q) can

1s = ±1 rather than ±1/2 relates to the fact that the electron’s intrinsic magnetic moment is the product
of the spin (±1/2) and the g-factor which happens to be about 2.
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occur due to differences in T. Thus ∆E = Q + W. In infinitesimal form, this is written
dE = δQ+δW. Note that δW = −p dV refers to a small amount of W, not a small “change”
in W; δW is not an exact differential.

For two different paths for a non-isolated system in (p,V)-space between two states (p1,V1)
and (p2,V2), the energy change will be the same ∆E = E(p2,V2)− E(p1,V1). However, the
work done is W =

∫
δW = −

∫
p dV, which will depend on the path p(V); Q =

∫
δQ will

depend on the path in the exact opposite way so that ∆E is the same for both paths.

4.2 The 2nd Law

2LT has two phrasings, which can be shown to be equivalent:

• Kelvin: No process can just extract heat from a reservoir and convert it all to work

• Clausius: No process can just transfer heat from cold to hot

4.2.1 The Carnot Cycle

Figure 2 | The Carnot Cycle.

Reversible processes are quasistatic processes that can
be reversed; e.g. without friction.

The Carnot Cycle is a particular cyclic series of re-
versible processes, operating between two reservoirs at
temperatures TH , TC < TH :

1. Isothermal expansion at TH, from VA to
VB. To do the necessary work for this expansion
without taking any internal energy from the sys-
tem (E = E(T) and T is constant), a heat QH is
absorbed from the TH reservoir.

2. Adiabatic expansion, from TH to TC. No
heat is absorbed — adiabatic.

3. Isothermal compression at TC, from VC to VD. The internal energy is constant
(isothermal) so heat QC must be squeezed out into the TC reservoir.

4. Adiabatic compression from TC to TH, back to the beginning. Again, no heat.

As the system is back where it started after one full cycle, there is 0 net energy change in the
system:

∮
dE = 0. Thus the total work done by the system

∮
−dW =

∮
dQ = QH − QC ,

the net heat absorbed. The efficiency η is defined as the work done (QH −QC) divided by the
gross heat absorbed (QH). Hence

η =
QH −QC

QH

= 1− QC

QH

According to Kelvin’s formulation of 2LT, QC > 0 so η < 1.
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Figure 3 | Illustration for Proof of
Carnot’s Theorem.

Carnot’s Theorem says that among heat engines op-
erating between two reservoirs, reversible heat engines
(such as Carnot’s) are the most efficient. A corollary is
that all reversible heat engines have the same efficiency,
depending on TH and TC alone: η = η(TH ,TC). To
prove, consider a general heat engine, extracting Q′

H

from TH , depositing Q′
C to TC , and using all its work

W to run a Carnot engine in reverse (extracting QC

from TC and depositing QH to TH). No net work is
being done by the combination of engines, Q′

H − QH

is taken from TH and Q′
C −QC is deposited into TC ;

these must be equal by conservation of energy. Now ac-
cording to Clausius’ 2LT, Q′

H −QH(= Q′
C −QC) ≥ 0,

i.e. the heat is not going from cold to hot, soQ′
H ≥ QH .

The efficiency of the general heat engine which we attached to the Carnot is then

η ≡ W

Q′
H

≤ W

QH

= ηCarnot ⇒ η ≤ ηCarnot

If this general engine happens also to be reversible, the whole argument can be run in reverse
and we would obtain ηrev ≥ ηCarnot as well, so in this case ηrev = ηCarnot, giving the corollary.
This reversible efficiency is η(TC ,TH) simply because there’s nothing else it could depend on.

At this point, one can define the Classical temperature through

ηCarnot = 1− QC

QH

≡ 1− TC

TH

That this is a good choice can be seen by using an ideal gas as the system. For the isothermal
stages, E = E(T) and so dE = 0 and δQ = −δW = pdV = NkBT

V
dV = NkBT d(lnV). Thus2

QH =

∫ VB

VA

NkBTH d(lnV) = NkBTH ln

(
VB

VA

)
QC = −

∫ VD

VC

NkBTC d(lnV) = NkBTC ln

(
VC

VD

)
Now for the adiabatic stages, pV5/3 ∝ TV2/3 is constant, soTHV

2/3
B = TCV

2/3
C , andTCV

2/3
D =

THV
2/3
A . As such

TH

TC

=

(
VD

VA

)2/3

=

(
VC

VB

)2/3

⇒ VB

VA

=
VC

VD

⇒ QC

QH

=
TC

TH

ln (VC/VD)

ln (VB/VA)
=

TC

TH

justifying the definition of Classical temperature above.
Defining Q1 = QH and Q2 = −QC , (so that Qi is always heat done on the system),

2∑
i=1

Qi

Ti

= 0

2The minus sign is because QC is defined as the heat released, i.e. as negative heat done to the system.
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For any reversible cycle, we can break it down into a series of infinitesimal Carnot cycles, in
which case the above generalises to

∮
δQrev/T = 0. This has the consequence that between

any two states, the integral for two different reversible paths between them
∫
I
δQrev/T =∫

II
δQrev/T is the same. This motivates the definition of the differential of a state function

called, oh I don’t know, S, such that dS = δQrev/T. Using δWrev = −pdV, we can then
substitute into 1LT:

dE = TdS− pdV

showing that this S is indeed the entropy, as this matches the expression for dE at the start.
As S is a state function, it actually doesn’t matter how we get between two states, reversible
or ir-, so the above is valid even for irreversible processes, even though δQ ̸= TdS unless the
heat is transferred reversibly.

4.2.2 Irreversible Processes

Consider an irreversible engine that does the same amount of work W as a Carnot engine:
W = Q′

H −Q′
C = QH −QC . The entropy change over a cycle of the irreversible engine is

∆Sirrev =
Q′

H

TH

− Q′
C

TC

=

0︷ ︸︸ ︷
QH

TH

− QC

TC

+
Q′

H −QH

TH

− Q′
C −QC

TC

=

≥0︷ ︸︸ ︷
(Q′

H −QH)

≤0︷ ︸︸ ︷(
1

TH

− 1

TC

)
≤ 0

where Q′
H ≥ QH because irreversible engines are less efficient than reversible ones and they are

doing the same work. Thus
∮
δQ/T ≤ 0, for not-necessarily-reversible processes. Now consider

going from some state A to B along an irreversible path I, and returning along a reversible
path II. We then require: ∫ B

A

δQ

T
≤
∫ B

A

δQrev

T
= S(B)− S(A)

For an isolated system, δQ = 0, so S(B) ≥ S(A): entropy always increases. Taking a small
limit we see that dS ≥ δQ/T ⇒ δQ ≤ TdS. As dE = δQ+ δW = TdS− pdV, we thus also
have −δW ≤ pdV, giving an upper limit on the amount of work −W that a system can do.

4.3 The 3rd Law
3LT : lim

T→0
N→∞

S

N
= 0

This just provides a constraint on heat capacities: as S(B)−S(A) =
∫ B

A
CVdT/T, we require

that for small T, CV tends to Tn for n ≥ 1 for S to be finite.

4.4 Thermodynamic Potentials

Any system can be described by any pair of p,V,E,S,T, . . . , except where a pair is degenerate
e.g. E and T in an ideal gas.

As dE = TdS− pdV, it is most natural to consider E as a function of S and V, though it
can be considered a function of any pair by rewriting the differential.

We may define also F = E−TS; G = F+ pV; H = E+ pV, so that:

dE = TdS− pdV; dF = −SdT− pdV; dG = −SdT+Vdp; dH = TdS+Vdp

By taking mixed partial derivatives of any potential, a Maxwell relation pops out; they can be
deduced more quickly using the Born square, in Figure 4.
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Figure 4 | The Born Square. Clockwise from top left, −6eV From The Gay-pride Hat

If N is not fixed (as it is above), then G depends on it: dG = −SdT+Vdp+µdN. Now
G(T,p,N) is extensive, but its only extensive dependent is N, so by scaling, G = µN.

F andG are also useful because they are minimised under different conditions. For instance,
F is minimised at constant V and T:

dF

∣∣∣∣
V,T

= dE

∣∣∣∣
V,T

−TdS = δQ−TdS ≤ 0

So F decreases until it no longer can. The same thing happens with G at constant p.

5 Phase Transitions

5.1 Van der Waals Fluids

Figure 5 | Van der Waals Isotherms of Ar-
gon. The isotherms shown are between 100K
and 200K. Argon has a = 3.7 × 10−49Pam6 and
b = 5.3 × 10−29m3, and hence Tc is about 150K.
This critical isotherm is in red; the dot is the crit-
ical point.

Van der Waals modelled fluids as interacting
gases with the following potential:

U(r) =

{
∞ r > r0

−U0(r0/r)
6 r ≥ r0

Using the techniques of §2.2, this gives the
van der Waals equation of state:

p =
kBT

v − b
− a

v2

⇔ v3−
(
b+

kBT

p

)
v2+

a

p
v−ab

p
= 0 (vdW)

where v = V/N. Isotherms of this are plot-
ted in Figure 5. We see that for high p and low T, the system reaches almost fixed v, becoming
almost incompressible – this describes a liquid. For low p and high T, the behaviour tends to
the ideal gas law. Although only really valid for dilute gases, vdW gives insights into liquids.

5.1.1 Critical Point

There is one isotherm (Tc) with a point of inflection: the critical point (vc,pc). Consider
plotting the cubic form of vdW against v, with p and T as parameters of the cubic. For
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T < Tc, there would be three vs that satisfy the cubic; for T > Tc there would only be one.
At Tc, the three roots of the cubic merge into one repeated root, at vc. Therefore with T = Tc

and p = pc, vdW must be equivalent to (v − vc)
3 = 0. Expanding, comparing and solving:

vc = 3b pc =
a

27b2
kBTc =

8a

27b

5.1.2 Maxwell Construction

Figure 6 | Isotherms with Maxwell construc-
tions. The T < Tc isotherms of Figure 5 are
shown in dotted lines, truncated by the Maxwell
constructions. The shaded area is where liquid and
gas exist in equilibrium, at the vapour pressure for
that temperature.

The vdW isotherms for T < Tc are unstable,
as there are regions where p increases with
v, so squeezing decreases the pressure. This
cannot represent a substance in stable equi-
librium – vdW is erroneous here. Also some
isotherms dip below p = 0 which seems bad.

In this region, a phase equilibrium exists
between two different systems : one liquid,
one gas. To be in equilibrium, these sys-
tems must have the same T (and hence lie
on the same isotherm) and p (and hence be
on one of the non-monotonic isotherms with
T < Tc). We can correct the vdW isotherms
by truncating the dip with a horizontal line
at some constant pressure pvap, on which the
substance is an equilibrium mix of liquid and
gas: this is the Maxwell construction.

Figure 7 | Phase Diagram for Argon.

To be in equilibrium, the liquid and gas
must also have the same µ. This turns out to
require that pvap should be such that the area
between the isotherm and the line p = pvap

is 0. The van der Waals isotherms are mod-
ified as shown in Figure 6. In the shaded re-
gion (the envelope of the Maxwell construc-
tions at different temperatures, bounded by
the “coexistence curve”), liquid and gas coex-
ist as two separate systems. Here, ”v” means
the average V per particle of the two; moving
along the construction at constant p corre-
sponds to changing the relative amounts of
liquid and gas. Sliding to the left end, the v
is that of the liquid; at the right it is a gas
(called a vapour when T < Tc).

Above the critical temperature, there is no pressure at which the system forms a liquid-gas
system; a substance cannot be in liquid form above its Tc. Water has Tc = 650K.

It is possible to decompress a pure liquid slightly across the coexistence curve without any
gas forming, so long as it doesn’t reach the unstable region with ∂p/∂v

∣∣
T
> 0 (bounded by

the “spinodal curve”, within the coexistence curve). Similarly, a pure gas can be compressed
across the coexistence curve from the right. These superheated liquids and supercooled vapours
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are metastable states; within the spinodal curve the substance is completely unstable.

5.1.3 Clausius-Clapeyron Equation

Phase diagrams are in the p-T plane, such as that in Figure 7. Crossing the liquid-gas (black)
line amounts to walking along the entire Maxwell construction: the coexistence curve is folded
up. On either side, the substance is thus either all liquid or all gas – at constant pressure, it
depends which has the lower G, or equivalently µ. At every point on the liquid-gas line, the
two are equal, so if we move along it µl and µg will change by the same amount: dµl = dµg.

dµ =
dG

N
=

−SdT+Vdp

N
⇒ −SgdT+Vgdp

Ng

=
−SldT+Vldp

Nl

⇒ dp

dT
=

Sg

Ng
− Sl

Nl

Vg

Ng
− Vl

Nl

=
L/T

vg − vl

=
L

T∆v

where the latent heat L = T(sg − sl) is the heat required per particle to convert liquid to gas.
L > 0, and usually ∆v > 0, though an exception is the solid-liquid transition for H2O.

A phase transition is said to be nth order if the nth derivative of F or G is discontinuous,
but the (n − 1)th is not. For the liquid-gas transition, S = − ∂F/∂T

∣∣
V

(latent heat) and

V = ∂G/∂p
∣∣
T
are both discontinuous, so this is a 1st-order phase transition.

5.1.4 Critical Exponents

The critical constants (β, γ, δ) are defined such that near the critical point,

vg − vl ∼ (Tc −T)β κ ≡ − 1

v

∂v

∂p

∣∣∣∣
T

∼ (Tc −T)−γ p− pc ∼ (v − vc)
δ

We now deduce these constants for a vdW gas.
Using reduced variables T̄ = T/Tc, p̄ = p/pc, v̄ = v/vc, vdW can be rewritten as:

p̄ =
8T̄

3v̄ − 1
− 3

v̄2

For an equilibrium (and thus equal p) mix of liquid and gas,

p̄ =
8T̄

3v̄g − 1
− 3

v̄2
g

=
8T̄

3v̄l − 1
− 3

v̄2
l

⇒ T̄ =
(3vg − 1)(3vl − 1)(vg + vl)

8v2
gv

2
l

Let ϵ = vg − vl, and near the critical point vg = 1 + ϵ/2 and vl = 1 − ϵ/2. Substituting

and expanding to second order gives T̄ ≈ 1− ϵ2/16, so vg − vl ∼ (T−Tc)
1/2 and β = 1/2.

At the critical point, ∂p/∂v
∣∣
T
= 0. If we move vertically from the critical point (increasing

the temperature), this gradient seems from Figure 5 to be decreasing, so for small (Tc −T),

∂p

∂v

∣∣∣∣
T

≈ ∂2p

∂v∂T

∣∣∣∣
crit

(T−Tc) = − kB
4b2

(T−Tc) ⇒ κ ∼ 4b

3kB
(T−Tc)

−1 ⇒ γ = 1

Along the critical isotherm, ∂p/∂v
∣∣
T
= ∂2p/∂v2

∣∣
T
= 0, so about the critical point,

p− pc ≈
1

6
∂3p

/
∂v3

∣∣∣∣
T,crit

(v − vc)
3 =

23a

36b4
(v − vc)

3 ⇒ δ = 3
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Rather than (β, γ, δ) = (0.5, 1, 3), experiments give (0.32, 1.2, 4.8). vdW fails here as it does
not account for density fluctuations. Recall:

−Φ = pV = kBT lnZ ⟨N⟩ = kBT
∂ lnZ
∂µ

∣∣∣∣
T,V

∆N2 = kBT
∂ ⟨N⟩
∂µ

∣∣∣∣
T,V

⇒ ∆N2 = ⟨N⟩ ∂ ⟨N⟩
∂ lnZ

∣∣∣∣
T,V

= ⟨N⟩ kBT
V

∂ ⟨N⟩
∂p

∣∣∣∣
T,V

= ⟨N⟩ kBTκ
∂ ⟨N⟩
∂V

∣∣∣∣
T,p

∝ κ

But κ ∼ (T−Tc)
−1 near the critical point, so ∆N diverges and vdW becomes very invalid.

5.2 Ising Model

Consider N sites in a d-dimensional lattice, at each of which lives a spin si = ±1. The Ising
(pronounced EE-zing) model has an energy involving a magnetic field B and only nearest-
neighbour interactions J :

E[{si}] = −B
∑
i

si − J
∑
⟨ij⟩

sisj

where the second sum is over pairs of nearest neighbours. Let each site have q nearest neigh-
bours (e.g. for a right lattice, q = 2d); the sum then has about 1

2
Nq terms. J > 0 encourages

neighbour alignment (a ferromagnet). In the canonical ensemble, the partition function is then

Z =
∑
{si}

exp (−βE[{si}])

where the sum is over all 2N possible sets of si. With this Hamiltonian, each lattice site will
have some average value ⟨si⟩ ∈ [−1, 1] depending on the likelihood of all the different sets of
{si}. The magnetisation is

m ≡ 1

N

∑
i

⟨si⟩ =
1

Nβ

∂ lnZ

∂B
= − 1

N

∂F

∂B

Suppose each si doesn’t vary much about m. The product sisj is then:

sisj = [m+ (si −m)][m+ (sj −m)] ≈ m2 +m(si −m+ sj −m) = m(si + sj)−m2

With this approximation, the energy of a given set {si} becomes

E ≈ −B
∑
i

si − J
∑
⟨ij⟩

[
m(si + sj)−m2

]
= −B

∑
i

si − Jm
q

2

∑
i

2si + Jm2Nq

2

=
1

2
JNqm2 − (B + Jqm)

∑
i

si

This “mean-field” approximation thus provides an offset and effectively modifies the magnetic
field to Beff = B + Jqm. Now, each site simply contributes 1

2
Jqm2 ± Beff to the energy,

independently of all the other sites. The partition function for 1 site is then:

Zi = exp

(
−β
(
1

2
Jqm2 +Beff

))
+ exp

(
−β
(
1

2
Jqm2 −Beff

))
= 2e−βJqm2/2 cosh (βBeff)
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⇒ Z = ZN
i = 2Ne−βJNqm2/2 coshN (βBeff)

We can then calculate m from this, and then find self-consistent solutions for m:

m =
1

Nβ

∂ lnZ

∂B
=

1

β

∂ ln cosh (βBeff)

∂B
= tanh(βBeff) = tanh(βB + βJqm)

Figure 8 | Self-Consistent Magnetisations in
the Ising Model. Magnetisation
plots for several different B are shown;
B = 0 falls to m = 0 at T = Tc and
stays there.

For B = 0, the self-consistency equation
is m = tanh(βJqm). m = 0 is always a
solution, but there may be others as well.
As m → ∞, tanh(βJqm) → 1, so if the
tanh gradient is initially greater than 1, it
will intersect the line m = m again at some
m = m0 > 0, and also at m = −m0. Now
for small m, tanh(βJqm) ≈ βJqm, so there
is a critical temperature Tc = Jq/kB above
which the tanh gradient is too low and the
only solution is at m = 0. Below Tc there
are two other solutions at m = ±m0(T); the
positive solution (if it exists) is shown in the
pure black line of Figure 8. m is continuous at
T = Tc, but ∂m/∂T ∝ ∂2F/∂T∂B changes
abruptly. Thus a (second-order) phase tran-
sition occurs.

For B ̸= 0, we see that no phase transition occurs when we increase T, as m changes
smoothly. Taking the limit of small βB, m (high T), the self-consistency equation becomes
m ≈ βB + βJqm ⇒ m0 ∝ B. Unlike with B = 0, one sign of m0 is now favoured over the
other. Although there is no phase transition on changing T, if T is fixed below Tc there is a
(first-order) phase transition on changing B, as m ∝ ∂F/∂B discontinuously flips.

5.2.1 Critical Exponents

In B −T space, the phase transition is simply a line along the B = 0 axis, ending at T = Tc.
Moving along this transition line, the self-consistent magnetisation becomes small near

T = Tc, so m = tanh(βJqm) ≈ βJqm− 1
3
(βJqm)3. Thus m ∼ (Tc −T)1/2.

Now starting from T > Tc and approaching along the T-axis from the right, consider
the behaviour of χ ≡ N ∂m/∂B

∣∣
T
. Differentiating the self-consistency equation and setting

B = m = 0,

χ = Nβ
(
1 + Jq

χ

N

)
sech2 (βJqm) = Nβ

(
1 +

Jq

N
χ

)
⇒ χ ≈ Nβ

1−Tc/T
∼ (T−Tc)

−1

Beginning at the critical point and fixing β = 1/Jq while varying B up and down, we have

m = tanh

(
B

Jq
+m

)
≈ m+

B

Jq
+

1

3
m3 ⇒ B ∝ m3

These three impersonate the critical constants of vdW.
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5.2.2 Landau Theory

Equilibrium configurations are those that minimise F, which in the mean-field Ising model is

F = − 1

β
lnZ =

JNqm2

2
− N

β
ln (2 cosh (βBeff))

Landau treats F as a valid function of m, even at non-equilibrium values. Setting ∂F/∂m = 0
gives the same equation for m as the self-consistency equation.

Consider a general 2nd-order phase transition, of a system symmetric in m:

F(m;T)− F0 = C(T)m2 +D(T)m4 + . . .

where we expect D(T) > 0 so that the system doesn’t collapse for large |m|. The shape of
F(m) depends on the sign of C(T); this sign may depend on T, e.g. for Ising with B = 0:

F(m;T) +NkBT ln 2 =

C(T)︷ ︸︸ ︷
NJq

2

(
1− Tc

T

)
m2 +

Nβ3J4q4

12
m4 + . . .

So depending on whether T ≶ Tc, F(m) will have a different shape. For T ≥ Tc, C(T) > 0 and
F(m) curves upwards ∀m – the only equilibrium solution is m = 0 and it is stable. However,
for T < Tc, C(T) < 0, and F(m) has valleys on either side of the m = 0. There are three
equilibrium solutions, but that of m = 0 is unstable. The other two at ±m0 are stable, and
by setting ∂F/∂m

∣∣
T
= 0 near Tc, we find m0 ∼ (T−Tc) as above.

Richer behaviour can be found in systems where F is a sextic polynomial in m. Such
functions may have stable equilibria at m = 0,±m0, but with F(m0) ̸= F(0). In such cases,
whichever of m = 0 or m = ±m0 has the higher value of F will be metastable.

First-order phase transitions can also be asymmetric in m, such as Ising with B ̸= 0.
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