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1 Timescales & Collisions

For any quantity Q, a rough timescale for its change is:

τ =
Q

| ∂Q/∂t |

If t ≪ τ , for a different timescale of interest t (such as a system’s age) then Q is effectively in
equilibrium over t.

Some processes involve exponential decays Q(t) = Q0e
−t/τ , such as radioactive decay. Oth-

ers involve power laws as Q(t) = Q0(t/T )
−α – such processes are said to not have any “intrinsic

scaling” or be “scale-free”, as their timescale τ = t/α changes with time and is of order the
system’s age.

1.1 Examples

• Dynamical timescale: can be derived by dimensional analysis to be of order

[G] = L3M−1T−2 ⇒ τdyn ∼
√

R3

GM

• Collisional timescale: the collision rate can be shown equal to nσv where n is the
number density of impactors, σ the collision cross-section, and v the relative speed.
Hence the collision time is

τcoll =
1

nσv

σ may be larger than the actual size of the object e.g. in gravitational focusing. An object
coming from infinity at v∞ and impact parameter b will collide with the body if

πb2 ≤ πR2

(
1 +

2GM

Rv2∞

)
and so the collision cross-section is effectively larger than πR2.

• Thermal time: in thermal equilibrium, heating and cooling processes are equal; if
heating were switched off, it would take τth to exhaust its thermal energy. The thermal
energy of a gas is CV T ; that of a photon gas is aT 4.
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• Sound crossing time: pressure disturbances can be transmitted across a region of size
R in time τsc = R/cs, where the speed of sound cs ∼

√
p/ρ. For an ideal gas

p =
ρkT

µmH

⇒ τsc = R

√
µmH

kT

• Alfvén wave crossing time: The Alfvén speed is vA =
√

B2/ρµ0, hence the Alfvén

wave crossing time is R
√

ρµ0/B2

• Diffusion time: Consider a random walk path, so that something travels a net vector
R =

∑N
i=1 λi where |λi| = λ∀λi, ⟨λi⟩ = 0 and ⟨λi · λj⟩ = 0. Calculating the expectation

value of R2 gives 〈
R2
〉
= Nλ2

It therefore takes on average N = R2/λ2 steps to travel a distance R. If each step takes
a time λ/v, then the diffusion timescale is

τdiff =
R2

λ2

λ

v
=

R2

λv

For photons in the Sun, λ = 1/(κρ), so the time taken to get out is ∼ R2
⊙κρ/c.

• Light crossing time is the absolute minimum: τγ = R/c

1.2 Applications

1.2.1 Light Echo

Consider a variable star surrounded by dust. If the star pulses, not only will we see the pulse
directly from the star, but we will also see light from the pulse reflected off of the surrounding
dust. This reflected light (the echo) will be seen a short time after the pulse itself, as the light
must travel along a slightly longer path to reflect off the dust before it reaches us (see Figure
1). For dust at a radius R from the star and at an angle θ to the line of sight, this distance
can be seen to be R(1− cos θ), so the time delay is τ = R(1− cos θ)/c.

Figure 1 | Light Echo Geometry.

If we replace the variable star with a variable quasar, the dust will be orbiting in an
accretion disc, with circular velocity v =

√
GM/R ish. We can measure the line-of-sight

velocity v⊥ =
√

GM/R sin θ, and plot this against τ = R(1 − cos θ)/c. At a particular R, θ

parametrises an ellipse in τ -v⊥ space with semi-axes R/c and
√

GM/R. The envelope of these
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ellipses can be found by deparametrising (eliminating θ:
Rv2⊥
GM

+ (1 − cτ
R
)2 = 1), differentiating

this equation wrt R (⇒ v2⊥
GM

− 2cτ
R2

(
1− cτ

R

)
= 0) and eliminating R. This gives τ = GM

c
v−2
⊥ .

Hence from the envelope we can deduce M , the mass of the quasar.

1.2.2 Two-Body Relaxation

This is a similar analysis to in the SDSG course, but it goes slightly differently.
When a star of mass m passes a large distance (or at high speed) past another at impact

parameter b and speed v, it will acquire a slight perpendicular velocity of about the acceleration
at b times the time spent around there:

∆v⊥ ∼ Gm

b2
b

v
=

Gm

bv

Now it will take a number N = (v/∆v⊥)
2 interactions for the star to be deflected by an amount

comparable with its original velocity (like a random walk in v-space). The rate of interactions
is nσv ∼ nb2v where n is the number density, so the timescale for two-body relaxation is

τ2br ∼
(
bv2

Gm

)2
1

nb2v
=

v3

G2m2n

which nicely is independent of b.

2 Distributions

For a probability distribution function p(q), the probability that q ∈ [q1, q2] is∫ q2

q1

p(q) dq =

∫ ln q2

ln q1

qp(q) d(ln q)

Where the latter form is useful on a logarithmic plot, used when p(q) ∝ q−α. In such cases,
the behaviour of q1−α determines which end of the distribution dominates the integral; also the
cumulative distribution is proportional to q1−α. If α > 1, then the distribution drops off very
quickly and lower-q contributions dominate; if α < 1 the distribution either drops off slowly or
increases, and hence higher-q contributions dominate.

The total “amount of q” contributed between q1 and q2 is∫ q2

q1

qp(q) dq

2.1 Applications

2.1.1 Initial Mass Function

A common distribution is the initial mass function (IMF) f(M), and above about 1M⊙ we
observe f(M) ∝ M−α with α = 2.35. The IMF is to be distinguished from the present day
mass function (PDMF) because of the earlier death of high-mass stars. The total luminosity
coming from stars between M1 and M2 is∫ M2

M1

L(M)f(M) dM

We observe that L(M) ∝ M3.5, so the total luminosity ∝ [M3.5−2.35+1] = [M2.15].
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2.1.2 Collisional Cascade

Assume the number of asteroids of a size a has number density distribution n(a) ∝ a−b. We
assume that fragmentational collisions occur only between asteroids of similar orders of mag-
nitude (a smaller asteroid will simply scrape a much larger one), that velocity is independent
of size, and that the rate of mass loss is independent of size.

The number of asteroids in a logarithmic bin size d(ln a) is a1−b d ln a, and the mass con-
tained within is a4−b d(ln a). When two asteroids of size ∼ a collide and fragment, they leave
this bin. The rate of these collisions is

nσv ∝ a1−ba2a0 d(ln a) ∝ a3−b d(ln a)

In each of these collisions the two asteroids in question are removed from that bin, so the rate
of mass loss from that bin is ∼

a4−ba3−b d(ln a) = a7−2b d(ln a)

As we postulated that the rate of mass loss is independent of a, this fixes a = 7/2.

3 Tides

3.1 Tidal Acceleration

Consider two masses M1 and M2 orbiting their mutual CoM and at a distance a from each
other. We will consider the tidal forces suffered by M2 as a result of the gravitational influence
of M1. For a circular orbit, centrifugal balance for M2 gives:

GM1

a2
= Ω2 M1a

M1 +M2

⇒ Ω2 =
G(M1 +M2)

a3

Consider a point located at coordinates (x, y), x, y ≪ a relative to the centre of M2, which
wlog we put along the x-axis. The x-acceleration at the point (x, y) is approximately

ẍ = − GM1

(a+ x)2 + y2
a+ x√

(a+ x)2 + y2
+ Ω2 M1a

M1 +M2

≈ − GM1

(a+ x)2
+ Ω2 M1a

M1 +M2

≈ −GM1

a2
+ Ω2 M1a

M1 +M2︸ ︷︷ ︸
0 by centrifugal balance

+
2GM1

a3
x =

2GM1

a3
x

which is repulsive: relative to the centre of M2, the point (x, y) is not being attracted as much
and so appears to be flung away from the centre. In the y-direction:

ÿ = − GM1

(a+ x)2 + y2
y√

(a+ x)2 + y2
≈ −GM1

a3
y

which is attractive (due to the y-component of the gravitational force) and has half the mag-
nitude of the x-acceleration. The tendency of a tide is therefore to stretch along the line of
attraction and squeeze perpendicular to it. The accelerations above can be accounted by a
“tidal potential”:

ΦT =
GM1

a3

(
−x2 +

1

2
y2
)
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A fluid will fill up to an equipotential surface, the sum of the tidal and gravitational potentials.
For instance, the oceans on Earth bulge a distance ∆ higher where the Moon is overhead1,
than where it is perpendicular. Say the Moon is over Accra (0° longitude, (x, y) = (R2, 0))
where the ocean is at a height R2 + ∆, and in Dhaka (90°, (x, y) = (0, R2)) the ocean is at
simply R2. For the equipotential to pass through both, we require:

− GM2

R2 +∆
− GM1

a3
(R2 +∆)2 = −GM2

R2

+
GM1

a3
1

2
R2

2

which can be expanded to 1st order and solved for ∆; alternatively we can use the fact that the
gravitational potential difference will be about g∆ = GM2

R2
2 ∆, which can be set equal to minus

the tidal potential difference. Either way, using the assumption that R2 ≪ a, we obtain

∆

R2

=
3

2

M1

M2

(
R2

a

)3

For the Moon’s tides on Earth this is about 60cm, though coastal resonances alter this. We
see that ∆ ∝ M1/a

3 ∝ ρ1R1
3/a3 ∝ ρ1θ

3, where θ is the angular size as seen from M2. The
Moon and the Sun have about the same θ, so the ratio of the tidal bulges caused by the two
is ρM/ρ⊙ ≈ 3. Thus the Moon dominates the tides; the Sun provides second-order Spring and
Neap tides.

3.2 Tidal Energy

The energy dissipated in the tide on M2 due to M1 is roughly:

Etide ≈ mbulgegh ≈

(
4πR2

2∆︸ ︷︷ ︸
≈Vbulge

· M2

4
3
πR2

3︸ ︷︷ ︸
≈ρbulge

)(
GM2

R2
2

)
∆ ∝ GM2

2

R2
3
∆2 ∝ GM1

2R2
5

a6

From this we see that the ratio of the energy dissipated in M2 to M1 is

Etide, 2

Etide, 1

=

(
M1

M2

)2(
R2

R1

)5

Hence for a pair of MS stars (which have M ∝ R), more energy is dissipated in the larger body.

3.2.1 Tidal Capture

If M2 is initially unbound and flies by M1, enough energy may be dissipated through tidal
interactions on M2 to tidally capture it. To go from an unbound orbit of energy 1

2
M2v

2
∞ to a

bound orbit of energy < 0, we require Etide >
1
2
M2v

2
∞, so:

Tidal Capture:
M2v

2
∞

2
<

GM1
2R2

5

a6p
⇒ v∞a3p ≲

√
GM1

2R2
5

M2

In a cluster, the dispersion is v∞ ∼ 10km/s. Thus for two Sun-like stars we require ap ≲
3.5R⊙. Hence tidal capture binaries can only form either very tightly, or if R1 is very compact,
such as for a white dwarf (this is how X-ray binaries begin).

For M1 a Sun-like star and M2 a rogue Jupiter-like (10−3M⊙, 0.1R⊙) planet, and v∞ ≈
30km/s, this gives about ap ≲ R⊙. It is thus difficult to tidally capture rogue planets.

1Or at the point antipodal to this sublunar point
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3.2.2 Tidal Destruction

Further than being captured, enough energy may be dissipated to destroy the object: if Etide

at pericentre is around the binding energy of M2 (of order GM2
2/R2), then the body will be

tidally destroyed. This condition is

Tidal Destruction:
GM1

2R2
5

a6p
≳

GM2
2

R2

⇒ R2 ≳

(
M2

M1

)1/3

ap

What happens to M2 depends on Etide: if it is above GM2
2/R2 then M2 will be unbinded and

destroyed; if

Tidal Capture (intact):
GM2

2

R2

≳ Etide ≳
1

2
M2v

2
∞

then M2 will be tidally captured intact; if Etide <
1
2
M2v

2
∞ then M2 will remain unbound to M1

and will drift away (though eventually reaching a speed < v∞ as it has lost some energy).
If the double inequality above sandwiches shut, then it will not be possible to tidally capture

intact – tidal effects will either destroy M2 or fail to even capture it. This condition is

Intact Tidal Capture Impossible:
1

2
M2v

2
∞ ≲

GM2
2

R2

⇒ v∞ ≲

√
2GM2

R2

So if the body’s original velocity is far above its own escape velocity, it will either remain free
or be destroyed.

If a star M2 passes by a star M1 which hosts a planetary disc, a rule of thumb is that M2

will transfer enough energy to the disc to unbind all of the disc material that is at a radius
greater than M2’s pericentre. This may reduce M2’s energy below 0, leading to it becoming
bound. Apparently gravitational focusing is strong in these interactions, and so the collision
cross-section for a disc of radius Rd is

σ ≈ πR2
d

[
2GM1

Rdv2

]
=

2πGM1Rd

v2

Hence the rate at which such collisions (potentially binary-forming events) occur for a given
star is thus

Γ = nσv =
2πnGM1Rd

v

Multiplying by the number of stars (and technically dividing by 2 to avoid double-counting
but we’re way beyond that now) gives the total rate of collisions in the whole cluster.

When a star passes within ap ≲ (M1/M2)
1/3R2 of a black hole of mass M1 it gets tidally

destroyed (=disrupted), but if this ap is less than the Schwarzschild radius 2GM1/c
2, then the

star will be swallowed first. This condition is

No Tidal Disruption:

(
M1

M2

)1/3

R2 <
2GM1

c2
⇒ M1 >

√
c6R2

3

8G3M2

which for a Sun-like star is of order 108M⊙. If M1 is less than this, the star may get tidally
disrupted if it passes within the ap above.
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3.3 Roche Potential

Consider a circular binary system with M1 and M2 ≪ M1, a apart. In the frame corotating
with the orbital frequency Ω =

√
G(M1 +M2)/a3 ≈

√
GM1/a3. In 2D, the centrifugal force

is Ω2r, so we can include a fictitious potential −1
2
Ω2r2, giving a Roche potential (Figure 2):

ΦR(r) = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
Ω2r2

Figure 2 | Roche Potential and Lagrange Points. In this diagram, M2 = 0.4M1.

This potential has 5 stationary (Lagrange) points, two of which (L1 & L2) lie on the same
equipotential and are approximately equidistant from M2 if M2 ≪ M1. L1,2,3 are unstable,
whereas L4,5 are stable: despite being maxima in the Roche potential, this does not account
for Coriolis; if a body at L4/5 is perturbed its velocity will in fact bring it back.

At L1, the attraction of M1 is balanced by the centrifugal force and the attraction of M2.
Setting L1 at a distance x on the near side of M2 and recalling that |r2| = M1

M1+M2
a, we have

GM1

(a− x)2
=

GM2

x2
+ Ω2

(
M1

M1 +M2

a− x

)
⇒ GM2

x2
≈ GM1

a2
+

2GM1

a2
x

a
− GM1

a2
+

G(M1 +M2)

a2
x

a
≈ 3GM1

a3
x

⇒ xL1 =

(
M2

3M1

)1/3

a

which is compatible with the calculation in §3.2.2 where this was identified (to within a factor
of 31/3) as the size R2 can be without being unbound by tidal energy. If R2 exceeds this Roche
radius, whether by expanding (increasing R2) or by spiralling inwards (decreasing a), then M1

7



will pull off bits of M2 on the near side, and on the far side bits of M2 will be flung off by the
centrifugal force. It turns out that L1 is slightly nearer to M2 than L2 is, so if M2 is growing
then matter will be drawn out of it from L1 rather than being flung out the back at L2.

3.4 Transfer of Angular Momentum

Consider two general systems transferring E and J . The total energy change will be ∆E =(
∂E2

∂J2
− ∂E1

∂J1

)
∆J , where ∆J and ∆E are transferred from system 1 → 2. It can be shown that

the quantities ∂E/∂J are equal to the relevant angular frequency Ω – e.g. for a rotating body,
∂E/∂J is the angular frequency of rotation; for a system of two orbiting bodies ∂E/∂J is the
angular velocity of the orbit. Thus ∆E = (Ω2 − Ω1)∆J .

Now tides dissipate energy away from rotations (via friction into heat), so ∆E < 0 and
Ω2 −Ω1 has the opposite sign to ∆J . Hence for ∆J > 0 (transfer of J to system 2) we require
Ω2 − Ω1 < 0, i.e. system 1 rotates faster. Hence angular momentum is passed from faster to
slower systems in terms of their angular velocity.

For example, the Earth rotates (about 27 times) faster than the orbit of the Moon, so
angular momentum is transferred from the Earth’s rotation to the Moon’s orbit. This causes
the Earth’s day to slow down and the Moon’s orbit to creep out2. The physical mechanism
behind this is friction between the Earth’s fast-rotating floor and the oceans, which drags the
high tide further east than the sublunar point; the Moon exerts a torque on the oblique bulge
to drag it back, slowing the Earth’s orbit.

A stable situation is where Ω1 = Ω2. This leads to tidal locking – for the Moon, the angular
frequencies of its orbit and its rotation are equal, so that the same side always faces the Earth.
Eventually the Earth’s rotation will also slow to become equal to the same angular frequency
as the Moon’s rotation and orbit, so that the same side of the Earth faces the Moon; Pluto
and Charon have already reached this stage of being “totally tidally despun”.

4 Cluster Dynamics

From the virial theorem, 2T + Ω = 0. As such, E = T + Ω = −T , and ∂E/∂T = −1. As the
kinetic energy T is a way of defining the “temperature” of a group of stars, we see that the heat
capacity of a virialised system is negative. This is an unstable situation, as if a region of stars
loses energy, it will become “hotter” as it sinks to the centre and gains kinetic energy. This will
increase the region’s temperature (despite losing energy overall as its potential becomes more
negative), increasing the temperature gradient and hence the rate of loss of energy... The result
is that the cores of clusters become exponentially hotter and denser over time, and eventually
implode.

This situation can be avoided by the formation of binaries, which tends to fling stars
back outwards to replenish the outer halo of a cluster. The energy of a cluster is about
−G(100M)2/rc, and that of a binary is about −GM2/rb, and rc ∼ 104rb, so the energy stored
in a binary is sufficient to reinflate the cluster.

2The angular momentum is transferred to a rather than Ω. In fact, the Moon’s angular velocity decreases!
This causes the gap in angular velocities to get larger and it becomes a runaway process

8



5 The Solar System

5.1 The Planets

Only some of the inner planets have retained an atmosphere. Mercury instead has an exobase,
which has lost the title of atmosphere because the mean free path of the molecules is larger
than the pressure scale height and so the molecules are essentially collisionless. The mean free
path is given by ℓ = (σn)−1 = kT/σp; the pressure scale height is found from:

g =
1

ρ
∇p =

kT

µmH

∇ ln ρ ⇒ ρ = ρ0 exp
(gµmH

kT
z
)

⇒ H =
kT

µmHg

So we see that an atmosphere requires p > µmHg/σ.
The outer planets are split between gas giants of H and He, and ice giants of water, ammonia,

and methane. They are all far less dense than the inner planets, indicating a partition of
chemistry in the protoplanetary disk.

Unlike H and He, metals aren’t blown away as the star forms, so the metals provide a less
biased view of what the protoplanetary environment was like. The metal content of the Sun
is of order 1028kg, whereas that of the planets is more like 1027kg, so the efficiency of planet
formation is only about 10%.

The (rotational) angular momentum of the Sun is L⊙ ∝ k2M⊙R⊙Ω⊙ = (0.3)2(2×1030)(7×
108)2(10−6) ∼ 1041kgm2s−1. The (orbital) angular momentum of Jupiter alone is LJ =
MJa

2
JΩJ = MJa

2
J

√
GM⊙/a3J ∼ 1043kgm2s−1, 100 times greater than that of the Sun. Yet

the Sun’s mass is 1000 times greater.

5.1.1 Minimum Mass Solar Nebula

The minimum mass solar nebula (MMSN) is the surface density Σ(r) of the protoplanetary
disk (PPD). This is achieved by “augmenting the [metal-enriched] planets with H and He to
restore a solar composition” and “spreading the augmented planetary masses through zones
surrounding their orbits” (Weidenschilling, 1977). The result is that the MMSN is

ΣMMSN ∼ 1021r−3/2 kg m−2

which fits with estimates from extrasolar PPDs.

5.2 Smaller Bodies

5.2.1 Size Distribution

More directly observed than the size distribution N(r) ∝ r−q is the magnitude distribution
N(H) ∝ 10αH . The magnitude is H = C − 2.5 logF , and the flux F ∝ r2, so H = C ′ − 5 log r.
Thus

r−q dr ∝ 10α(−5 log r) dH = r−5α

∝r−1︷︸︸︷
dH

dr
dr ∝ r−5α−1 dr ⇒ q = 5α + 1

(the +1 was missing from the notes but it’s in papers n stuff). Observations show q = −7/2
in the asteroid belt, as would be expected for a collisional cascade.

The Kuiper Belt has no large objects in it, and the whole thing has only 1% the mass of
the Earth. This may be because the collision timescale is proportional to (ΣΩ)−1 ∝ a3, so it
would take ages to grow anything big.
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5.2.2 Differentiation

Some asteroids (chondrites) contain pristine grains (chondrules), whose composition is repre-
sentative of the PPD.

Other asteroids are differentiated into a metallic (mostly Fe) core and a silicate mantle.
These give rise to different types of meteorite depending on whether it broke off the asteroid’s
core (iron meteorites) or the mantle (achondrites). This differentiation requires the sinking of
the metal to the core, which requires the asteroid to melt somehow. There are two ways this
could have happened:

GPE Release. The gravitational potential of a uniform sphere is U = −3
5
GM2

R
. This

is converted to thermal energy on formation, and the maximum temperature this could have
raised the asteroid to depends on U and the specific heat of the asteroid CpM . This would
have been sufficient to melt the rocky planets, but not 4 Vesta (which we know did melt).

Radionuclides. The temperature change due to radioactive decay is

d∆T

dt
=

Q(t)

Cp

=
Q0X0

Cp

e−λt ⇒ ∆T =

∫ ∞

t0

d∆T

dt
dt =

Q0X0

λCp

e−λt0 ∼ 103K

where Q0 = 0.355Wkg−1 is the initial rate of heat production per kg of 26Al, X0 = 7× 10−7 is
its initial abundance, λ = ln 2/(7 × 105yr) is its decay constant, and t0 is the time it takes to
form the object. This would have been sufficient to melt 4 Vesta.

6 Exoplanets

6.1 Demographics

Figure 3 | Exoplanet Demographics.

Most planets seem to have M ≫ ME, r < rE (see Figure 3). Three populations emerge:

• Hot Jupiters: 102-103ME and 10−2-10−1au. About 1% of stars have these easily-
detectable planets. They are expected to have migrated during their lifetime.
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• Super Earths: 1-10ME. May be more like Neptune than Earth. More likely to have
formed in situ and not moved much.

• Ice Giants: 102-104ME and 1-10au. Think Uranus and Neptune. Metal-rich.

There are notable dearths of planets:

• Inner Edge: ≲ 10−2au

• Outer Edge: ≳ 10au (this is likely a measurement effect)

• Period Valley: 0.1-1au

• Planetary Desert: 10-100ME.

• Fulton Gap: 1.5-2RE (not really visible in the above data)

Further, the planet-star ratio peaks at around 10−5, between Earth and Neptune: Super Earths
are the most common type of planet.

To figure out if these data match the MMSN, we spread the mass of an exoplanet around an
annulus of radius r ±∆r with ∆r = r/2, which has surface area ≈ 2πr∆r = πr2. The surface

density associated with that planet is then Σi = Mi/πr
2
i . Observationally we find Σi ∝ r

−3/2
i

as with the MMSN, though with a proportionality constant about 5× larger.
With the relations Σ ∝ r−3/2, Σ ∼ Mr−2 and Kepler’s r3 ∝ T 2, we have M ∝ r1/2 ∝ T 1/3,

a mass-period relation which works ok.

6.2 Limitations of Detection Methods

The main exoplanet detection methods are radial velocity and transit. In each case, the
signal strength (the amplitude of the oscillations of spectral lines, or the amplitude of a flux
reduction) depends to first order on the parameters of the system (e.g. M , r) and to second
order on the details (e.g. eccentricity), which will only influence the detailed shape of the signal;
they will only affect the signal strength by a factor g ∼ 1, modifying the signal strength A to
gA. If there is some noise σ associated with each measurement and one takes N measurements,
the overall noise on the measurements will be σ/

√
N . The signal-to-noise ratio is then

SN =
gA

σ/
√
N

= gN1/2A

σ

6.2.1 Radial Velocity

A spectral line at frequency f0 will be shifted to f ′ = f0/(1 + v∗/c), so in terms of the shift
∆f = f0 − f ′,

∆f

f0
= 1− 1

1 + v∗/c
⇒ v∗

c
=

(
1− ∆f

f0

)−1

− 1

For a circular orbit of MP around M∗ at a distance aP , the star’s velocity is

v∗ ≈
MP

M∗

√
GM∗

a

If the orbit is inclined by an angle i, we will only observe a maximum line-of-sight velocity of
amplitude v∗ sin i ∝ MPa

−1/2 sin i.
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The noise, originating from stellar convection and the instruments, doesn’t depend on the
properties of the planet. To detect the planet, the SN must be above some critical value.
Rearranging, we obtain

SNcrit
σ√
N

= gA ∝ MPa
−1/2 sin i

The minimum detectable mass thus varies as MP,min sin i ∝ a1/2. As expected, planets further
out must be more massive to be detectable. This explains a diagonal lower limit in Figure 3(a),
which is about MP sin i ∝ a1/2.

The spectral resolution R of radial velocity spectrometers is the maximum f0/∆f de-
tectable, and is about 105. Expanding the expression for the radial velocity above, we find
v∗
c
≈ 1

R
, so the minimum detectable v∗ is about c/R ∼ 108/105 = 1kms−1. This looks bad as

even Jupiter causes only v∗ ∼ 10ms−1 and Earth ∼ 1ms−1; luckily other information (like the
line widths) enables greater accuracy.

6.2.2 Transits

Figure 4 | Kepler Data from a Transit of WASP-47, by what I think is WASP-47b.

A transit light curve has several important features, shown in Figure 4 above:

• Transit Depth δ = ∆F/F0. This gives the size of the planet relative to its host star,
as δ = R2

P/R
2
∗. Earth would have δ = 10−4

• Transit Time Tt. This is measured FWHM. Assuming the orbit is edge-on,

Tt =
2R∗

vP
=

2R∗

2πa/T
=

R∗T

πa
Earth: Tt ≈ 13hrs

• Duty Cycle fP = Tt/T = R∗/πa. The fraction of the planet’s orbital period spent
transiting the planet.

• Duration of Ingress/Egress τ . The time the planet takes to enter full transit. Again
assuming an edge-on orbit:

τ =
2RP

vP
=

RPT

πa

from which we also find that τ/Tt = RP/R∗ = δ1/2. Earth: τ ≈ 8mins.

12



If the orbit is not edge-on (i ̸= 90°), things are more complex. The transit may not even be
visible from Earth: if the radii of planet, star, and orbit are known, the probability of transit
is apparently p(transit) ≈ R∗/a. Also, the dimensionless quantity b is defined for a transit
so that the projected distance between the centre of the star and the planet at conjunction is
bR∗ = a cos i. For larger b, the planet will only be blocking out the redder limbs at the top of
the star, giving different light curves at different wavelengths.

Again, the noise σ is independent of the planet’s properties, however N , the number of
measurements made of the transit, is proportional to the duty cycle fP . The signal strength is
δ. The limiting signal-to-noise ratio is then

SNcrit ∝ f
1/2
P δ ∝ a−1/2R2

P ⇒ RP ∝ a1/4

explaining a diagonal lower limit in Figure 3(b).
These considerations of biases in the data have not explained many features of the exoplanet

demographics, and so must relate to the planet formation process.

6.3 Metallicity

I really have no idea why this section is here. There’s a bit about galactic chemical evolution
but it’s not worth the effort. If a question comes up on it, I cannot help you.

The metallicity Z of something is the proportion of its mass consisting of >He. For instance
the Sun is about 98% H and He so has a metallicity of Z⊙ ≈ 0.02.

The quantity [Fe/H] is defined in the following way:

[Fe/H] = log10

(
NFe/NH

∣∣
∗

NFe/NH

∣∣
⊙

)

So a quantity that is more iron-rich than the Sun will have a positive [Fe/H]. Note that [Fe/H]
uses the number of atoms, whereas Z uses mass.

The composition of planets should reflect that of the star, and indeed that of the molecular
cloud from whence it formed. Metal-rich stars appear to be more likely to host giant planets,
suggesting that their growth is aided by metals somehow.

In the “core accretion model” of giant planet formation, we start with a Z = 1 metal core
of Mc = 10ME, and then accrete a stellar-metallicity (Z∗) envelope to make up the rest of the
planet’s mass. Hence the metallicity of the overall planet is

ZP =

metal mass in planet︷ ︸︸ ︷
Mc + (MP −Mc)Z∗

MP

= Z∗ +
Mc(1− Z∗)

MP

⇒ ZP

Z∗
= 1 +

Mc

MP

1− Z∗

Z∗

Observationally though, ZP/Z∗ ∝ M
−1/2
P . Perhaps giant planets preferentially accrete metals

over H/He, such as sweeping up planetesimals.

7 Protoplanetary Disks

The precursor to a protoplanetary disk is a turbulent molecular cloud. On collapse, there will
be some non-zero angular momentum so the cloud collapses into a disk. Radially, the disk is
supported by centrifugal force; vertically it is supported by pressure gradients.
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7.1 Temperature

7.1.1 Radial

No one seems to be consistent with the definitions of intensity, radiance, flux, flux density etc.
and the method given in the slides is incomprehensible as well as not quite compatible with
the notes. Anywho, the latter gives the disk temperature Td(r) as Td ∝ r−3/4.

The net torque τnet on an annulus ∆r is dτ
dr
∆r, and so the rate of work done is τnetΩ:

τnetΩ =
dτ

dr
Ω∆r =

[
d(τΩ)

dr
− τ

dΩ

dr

]
∆r

It is (apparently) the second term which is important, as it is the differential angular velocity
across the annulus that creates friction. The dissipation rate per unit area D(r) is simply this
work rate divided by the area from which the heat is radiated: 2 × 2πr∆r (the disk radiates
from both sides). Thus

D(r) =
τ

4πr

dΩ

dr

In the steady state, this is equal to σT 4
d , so

Td =

[
τ

4πσr

dΩ

dr

]1/4
Continuing this requires expressions for τ and Ω(r). From fluid dynamics, the viscous force is
2πrνΣ ·r dΩ/dr , so the viscous torque is 2πr3νΣ dΩ/dr . Let Ω(r) be the Keplerian

√
GM∗/r3

and dΩ/dr = −3
2
Ω/r. Then3

Td =

[
2πr3νΣ

4πσr

(
dΩ

dr

)2
]1/4

=

[
νΣ

2σ
r2
9

4

GM∗

r5

]1/4
=

[
9

8

GM∗νΣ

σ

]1/4
r−3/4 ∝ r−3/4

as with the radiation calculation, assuming that Σ is independent of r for some reason.

7.1.2 Vertical

Suppose all the energy of the disk is liberated at z = 0 and radiatively diffuses up to a height
at which τ = 1 and T = Td. Suppose h/r ≪ 1 so that vertical gradients matter most. The
power flux is F (z(τ = 1)) = σT 4

d at the surface, but it must be this at all heights in the disk,
otherwise some layer would accumulate energy and heat up until the whole disk equilibrates
again. The radiative diffusion equation is

F (z) = − 16σT 3

3κρ(z)

dT

dz
= σT 4

d ⇒ −16

3

∫ Td

T (z)

T 3 dT = T 4
d

τ−1≈τ︷ ︸︸ ︷
κ

∫ z(τ=1)

z(τ)

ρ(z) dz

⇒ T (τ) = Td

(
1 +

3τ

4

)1/4

≈ Td

(
3τ

4

)1/4

This temperature variation means that different species which condense at different tempera-
tures will do so at different heights.

3The lecturer really messed this derivation up
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7.2 Shape

The disk doesn’t just collapse down to infinitesimal thickness because eventually the disk’s
pressure can vertically support the disk. The vertical component of the star’s gravity is gz =
GM∗
r3

z, and hydrostatic equilibrium requires dp
dz

= −ρgz. Thus, now assuming temperature is
independent of z for some reason,

kTd

µmH

dρ

dz
= −GM∗

r3
z ⇒ ρ = ρ0 exp

(
− z2

2h2

)
where h2 =

kTd

µmH

r3

GM∗

h is the scale height and ρ0 is the midplane density. The scale height therefore varies as
h ∝ T

1/2
d r3/2 ∝ r−3/8r3/2 ∝ r9/8. The aspect ratio h/r ∝ r1/8 is thus nearly constant, “flaring”

only weakly. At Earth’s position we apparently have Td ∼ 100K, so h/r ∼ 0.1, so the disk
would have been ∼ 0.1au thick here.

8 Solid Dynamics & Planet Formation

There is evidence for transport of material within disks:

• Comets feature refractory (melted) material despite being 100s of au away

• The period valley probably reflects planet migration

• The Earth is rich in volatiles despite its proximity to the Sun

• Assuming the MMSN, a Jupiter-mass planet would need to be at 10au to sweep up
enough mass from an annulus the size of its Roche lobe, yet HJs are found at < 0.1au

The two main components of the disk are gas and dust grains.

8.1 Gas

The radial force experienced by gas is not only gravitational, but also from pressure gradients
in the disk. This modifies the equation of motion to:

v2ϕg
r

=
GM∗

r2
+

1

ρg

dp

dr
=

v2K
r

+
1

ρg

dp

dr
⇒ v2ϕg = v2K(1− η) where η ≡ − 1

v2K

r

ρg

dp

dr

As dp/dr < 0 ⇒ η > 1, the gas velocity will be sub-Keplerian. In fact,

η ∼ 1

(rΩ)2
r

ρ0

p0
r

=
1

r2

h2︷ ︸︸ ︷
r3

GM∗

kTd

µmH

=
h2

r2

Thus at 1au, where h/r ≈ 0.1, the gas velocity is reduced by a factor
√
0.99 with respect to

vK , giving a headwind of about 100ms−1 for dust grains, which want to travel at vK .
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8.2 Dust

If a dust grain of radius a has a velocity v relative to the gas, it will experience a drag force.
In a time dt it will sweep through a mass dm = ρ(πa2)(v dt) of gas particles. For energy
conservation we expect that the work done on the grain, F dx = Fv dt, will be given to the
gas molecules and thus proportional to 1

2
dmv2. So

Fv dt = Cd
1

2
dmv2 = Cd

1

2

(
ρgπa

2v dt
)
v2 ⇒ F = −πa2

2
Cdρgv

2

The drag coefficient Cd takes different forms depending on the busyness of the gas. The Epstein
regime has a < λ (a dilute gas), which gives Cd =

8
3
cs
v
∝ v−1. The Stokes regime has a > λ (a

busy gas) and Cd as some function of the Reynolds number Re = av/ν ∝ v.

8.2.1 Vertical Motion

Frictional Timescale. This is defined by grain momentum over (Epstein) drag force:

tfric =
mv

πa2

2
Cdρgv2

=
2
(
4
3
πa3ρd

)
πa2
(
8
3
cs
v

)
ρgv

=
a

cs

ρd
ρg

Using ρg ∼ 10−7, ρd ∼ 103, cs ∼ 103, a ∼ 10−6 (all SI), we find tfric ∼ 10s, which is very short
compared to the lifetime of the disc (106yr ∼ 1013s). The consequence is that for even cm-sized
a, the dust is strongly “coupled” to the gas – that is to say moving along with it.

Settling Timescale. Consider a grain at the scale height and falling towards the midplane
at terminal velocity, that is, when the gravitational force is equal to the (Epstein) drag force:

GM∗mz

r3
=

πa2

2

8cs
3vT

ρgv
2
T ⇒ vT =

GM∗

r3

(
4π

3
ρda

3

)
3

4πa2csρg
z = Ω2 a

cs

ρd
ρg

z

This gives a timescale at 1au of tset = z/vT ∼ 1013s ∼ 106yr, comparable to the lifetime of the
disk and way longer than tfric.

This analysis does not account for turbulence. If the disk is very turbulent then settling
grains will be suspended away from the midplane. Turbulence can be modelled like diffusion,
whose timescale is tturb ∼ z2/D. By setting tturb = tset, one can find a critical diffusion constant
Dcrit ∝ a, above which turbulence wins. Intuitively, larger grains thus need turbulence to be
stronger to prevent them from settling.

Growth Timescale. As the grain falls at vT , it encounters smaller grains which stick to it,
and the grain grows. In a time dt, the grain encounters a mass dm = πa2vT (fρg) dt of smaller
grains, where f = ρd/ρg. Thus the rate of mass growth is

dm

dt
= πa2

(
Ω2 a

cs

ρd
ρg

z

)
fρg =

3

4

Ω2

cs
fzm

Now the grain tends to grow much quicker than it settles (apparently), so z can be taken as
constant, so dm

dt
∝ m and the grain grows exponentially. Within 100yr, the grain grows from

micron to millimetre.

16



8.2.2 Azimuthal Motion

Dust grains will experience an azimuthal drag due to their speed (≈ vK) being different to that
of the gas, whose velocity is affected by gas pressure. The rate of change of (specific) angular
momentum is then given by

d

dt
(rvK) =

dr

dt

[
vK + r

−vK/2r︷︸︸︷
dvK
dr

]
=

1

2
vrdvK

This will be equal to the (specific) torque, equal to r× the (specific) force, which is of order
−(vϕd − vϕg)/tfric. Thus

vϕd − vϕg = −vrdvKtfric
2r

8.2.3 Radial Motion

The dust is not expected to accelerate in the radial direction: dvrd/dt = 0. The radial forces
on the dust (which therefore sum to 0) are centrifugal, gravitational and frictional:

0 =
v2ϕd
r

−

grav.︷︸︸︷
v2K
r

−

fric.︷ ︸︸ ︷
vrd − vrg

tfric
=

v2ϕd
r

−
v2ϕg

r(1− η)
−

vrd≫vrg︷ ︸︸ ︷
vrd − vrg

tfric
≈

v2ϕd − v2ϕg
r

− η
v2ϕg
r

− vrd
tfric

≈

≈2vK︷ ︸︸ ︷
(vϕd + vϕg)

−vrdvKtfric/2r︷ ︸︸ ︷
(vϕd − vϕg)

r
− η

≈v2K︷︸︸︷
v2ϕg
r

− vrd
tfric

≈ −vrdv
2
Ktfric
r2

− η
v2K
r

− vrd
tfric

⇒ vrd
vK

= − 1

vK

ηv2K
r

(
v2Ktfric
r2

+
1

tfric

)−1

= −η

(
vKtfric

r
+

r

vKtfric

)−1

≡ − η

τ + τ−1

so dust drifts inwards at a rate depending on η and the dimensionless quantity τ . η simply
depends on r, whereas τ depends also on tfric and hence on a. The maximum vrd is clearly for
τs = 1, which corresponds to a size of a few metres at 1au, for which vK ∼ 100ms−1, which
would need only 100yrs to reach the Sun. This is called the drift barrier, as to form things
larger than this would require metre-sized bodies to grow rapidly to avoid falling into the Sun.
However, this analysis neglects radial gas motion and the influence of large planets on the gas.

8.3 Planetesimal Growth

8.3.1 Collisions

Depending on the specific energy Q = mv2/2M of a collision between massesm < M , two plan-
etesimals may merge, break off and reform as a rubble pile, or be totally destroyed/“dispersed”.
The latter requires Q ≥ QD, where QD is a measure of how hard it is to break apart. QD

depends on a in a characteristic way:

• Strength-dominated: a ≲ 1km. QD is dependent only on the material strength. As a
increases the number of fractures in the planetesimal increases, making it easier to break
apart: QD decreases.

• Gravitationally-controlled: a ≳ 1km. In this regime the ability of gravity to hold it
all together becomes important in preventing dispersion – in other words overcoming the
(specific) gravitational binding energy QB(∝ (GM2/a)/M ∝ M/a ∝ a2) becomes the
main barrier, rather than the material strength. Thus QD increases with a.
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Thus planetesimals of size ∼ 1km are the easiest to break apart. This presents another barrier
to planet formation: the fragmentation barrier ; once a growing planet reaches a size ∼ 1km,
it becomes susceptible to fragmentation. This may be avoided if one is past the ice line of a
system, as ice is sticky and discourages fragmentation.

8.3.2 Accretion Rate

As mentioned previously, gravitational focusing modifies the effective collision cross-section by
a gravitational focusing factor (GFF) = (1+v2esc/σ

2), where σ is the velocity dispersion among
the planetesimals.

The accretion rate Ṁ is the product of the planetesimal density, the planetesimal velocity,
and this effective cross-section:

Ṁ = ρpσπa
2

(
1 +

v2esc
σ2

)
In this swarm of planetesimals, they will be bobbing up and down around the disc, on a vertical
scale similar to their scale height hp and a timescale similar to ΩK , thus σ ∼ hpΩK . Also, the
planetesimal surface density Σp ∼ ρp/2hp. Thus

Ṁ ∼ ΩKΣpa
2

(
1 +

v2esc
σ2

)
where we see that Ṁ depends on σ only through the GFF. Using Σp ∝ r−3/2 and ΩK ∝ r−3/2,
we find Ṁ ∝ r−3, a strong dependence!

Supposing σ is high so that the GFF is constantly about 1, we then have Ṁ ∝ a2 ∝ M2/3,
with the solution M(t) ∝ t3 and a ∝ t.

Supposing instead that GFF ≫ 1 and σ is constant, we have GFF ∝ v2esc ∝ Ma−1. Then

Ṁ ∝ a2Ma−1 ∝ M4/3, which has the solution M(t) =
(
M

−1/3
0 − kt

)−3

. As this blows up in

finite t another regime must take over at some point.

8.3.3 Isolation Mass

The isolation mass is the mass a planet has when it exhausts its orbital surroundings (an
annulus of radius r ±∆r ≈ r ±RRoche) of planetesimals. The mass in this annulus is

Miso ≈ 2πr · 2∆r · Σp = 4πr

(
Miso

M∗

)1/3

rΣp ⇒ Miso ≈ (4πΣp)
3/2M−1/2

∗ r3

At r = 1au, and using Σp ∼ 102 for some reason, we find Miso ∼ 10−1.5ME, about the size of
Mars’ core. At r = 5au, Miso ∼ 5ME, which is about the size of Jupiter’s core.

To create planets decently larger than a few ME, we require a new construction process,
e.g. planet-planet collisions.
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