
Black Holes

Xander Byrne

Lent 2023

1 Basic Properties

A black hole (BH) is an object that creates strong enough spacetime curvature that it is out
of causal contact with the rest of the Universe. The no-hair theorem states that fields external
to BHs are characterised only by the mass, spin, and charge; charged BHs are unrealistic and
so we do not consider the charged (Reissner-Nordström and Kerr-Newman) solutions.

1.1 Observations

The BH mass distribution function is bimodal. Stellar mass BHs have M ∈∼ [3, 102]M⊙ and
are the remains of stars with M ≳ 25M⊙. They are observed in X-ray binaries (XRBs) and
the gravitational waves of merging BH binaries. Supermassive BHs (SMBHs) have M ∈∼
[105, 1010]M⊙, and are at the centres of most massive galaxies. Rapidly accreting SMBH can
outshine all of the stars in their galaxy, being then labelled active galactic nuclei (AGN), the
most powerful of which being called quasars.

BH solutions of GR require large densities and hence compactness. This is evidenced by
fast variability (short crossing times, hence small radii), large Doppler shifts in surrounding gas
(hence fast orbits), or, in the case of Sgr A* in the Milky Way, resolved orbits of stars orbiting
a point source that is invisible without the aid of an Earth-sized radio telescope.

1.2 Schwarzschild Black Holes

In Newtonian gravity, the energy equation is

1

2
ṙ2 + Φeff(r) = E, Φeff(r) =

h2

2r2
− GM

r

where h is the specific AM. Newtonian theory is inaccurate when r ≲ rG ≡ GM/c2. Instead:

1

c2

(
dr

dτ

)2

+V (r)2 = E2, V (r)2 =

(
1 − 2GM

rc2

)(
1 +

h2

r2c2

)
;

dt

dτ
= E

(
1 − 2GM

rc2

)−1

where τ is proper time and h is relativistic specific AM. As r → 2GM/c2, we see that V →
0 and dt/dτ → ∞. The surface r = rh ≡ 2GM/c2 = 2rG is the event horizon1. Some
curves for V (r) are shown in Figure 1. Differentiating V (r) shows2 its stationary points to be:

1Mathematically, this surface is not a singularity of spacetime as the curvature tensor is finite; mass can
freely fall through this surface (though only in one direction!).

2This is least painfully done by finding dV 2
/
d(rg/r) , which the chain rule says is proportional to dV /dr .
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Figure 1 | Relativistic potentials for differ-
ent AM. The critical curve, for h̄ =
2
√
3, is shown in red.

r

rG
=

h̄2

2

(
1 ±

√
1 − 12/h̄2

)
, h̄ ≡ hc

GM

Hence for h ≤ 2
√

3GM/c, the potential
is monotonically increasing, and for h >
2
√

3GM/c there are two stationary points
due to a centrifugal barrier emerging; it turns
out one is stable and the other unstable. If
E = maxV , then we will have dr/dτ = 0 at
the maximum of the potential, so the particle
cannot fall into the BH. But if E > maxV ,
then the centrifugal barrier can be overcome.

As h approaches the critical value from
above, the location of the stable orbit (at
which a particle can stably orbit the BH) moves inwards; at the critical h, we see that the
circular orbit is at r = 6rG = 6GM/c2: this is the innermost stable circular orbit, or ISCO.
Accretion disks around BHs will have an inner edge here, with anything within plummeting.

1.3 Kerr Black Holes

BH rotation affects the spacetime. Their rotation is encapsulated by the distance ā ≡ aGM/c2,
where a ∈ [0, 1] is the spin parameter of the rotating BH. The event horizon is modified from
2rG to rG +

√
r2G − ā2 in the equatorial plane, naturally tending to the Schwarzschild radius as

a → 0. The ISCO depends in a complicated way on a; for a → 1 (a maximally spinning BH),
we find rISCO → rG and rh → rG so the orbits go right to the edge. Importantly, this allows
more energy to be churned out of accreting matter before it is lost within the event horizon.

Matter orbiting in the opposite direction to a maximally spinning BH has rISCO = 9rG.
Counter-rotating matter is dragged round onto a corotating orbit before crossing the horizon.

1.4 Entropy & Collisions

Stephen Hawking’s epitaph says that the entropy of a BH is SBH = (kBc
3/4ℏG)A, where A is

its surface area. Thus the sum of the surface areas of all the BHs in the Universe can never
decrease unless something very entropic happens. The area turns out to be given by:

A = 4π
[
r2h + ā2

]
= 4π

[(
rG +

√
r2G − ā2

)2

+ ā2

]
a→0−−→ 4π

(
2GM

c2

)2

A rotating BH can therefore have mass (i.e. energy) extracted from it, so long as it is com-
pensated by decreasing a and the mass does not fall below M irr =

√
A/16π; mass cannot be

extracted from a Schwarzschild BH. Consider two Schwarzschild BHs, each with mass M1,
colliding to form a single BH with mass M2. Let the collision be head-on, so that the resulting
BH will have no AM and thus also be Schwarzschild. We require

4π

(
2GM2

c2

)2

≥ 2 × 4π

(
2GM1

c2

)2

⇒ M2 ≥
√

2M1

which is less than the original amount of mass! The rest (at most (2 −
√

2)M1 ≈ 0.59M1) is
radiated away as gravitational waves.
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1.5 Luminosity & Radiative Efficiency

AGN are sourced by extraction of potential energy from accreting gas onto a compact SMBH.
In the Newtonian limit, the potential energy released per unit mass falling onto a body of mass
M and radius R is GM/R; for a neutron star (M = M⊙, R = 10km), this gives 1016J/kg.
Nuclear fusion gives 0.007c2 = 6×1014J/kg, which is much lower; clearly this will be way lower
than the energy from BH accretion. Neutron stars have a hard surface, so accreting gas shocks
near the surface, converting all its kinetic energy to thermal energy and then radiation, with a
luminosity L = GMṀ/R, where Ṁ is the rate at which mass is falling onto the star. However,
BHs don’t have a solid surface, so some energy is accreted through the event horizon, adding
to the BH mass and never being radiated. We could parametrise this by a correcting factor to
GMṀ/R but that stops being good relativistically, so we instead write

L = εṀc2

defining the important parameter ε. Note that Ṁ is not the rate of change of the mass M of
the black hole, which we will write Ṁ in a different colour3; Ṁ is the rate at which matter is
falling onto the BH, some of which may be radiated away as energy rather than be added to
the BH mass. Indeed, the change in the mass of the BH will be the mass that is not being
radiated out, that is, Ṁ = (1 − ε)Ṁ . Hence

L =
ε

1 − ε
Ṁc2

Nuclear fusion gives ε = 0.007, which would require ridiculously large Ṁ to match observed
quasar luminosities. Schwarzschild BHs’ maximum ε can be estimated using a Newtonian
formula for their released energy of L = GMṀ/2rISCO, which implies ε = 1/12 = 0.083; a
more accurate GR calculation gives ε = 0.057. Corotating Kerr BHs have ISCOs much closer
to their horizons: maximally spinning BHs4 have ε = 0.42. Observationally, ε ∼ 0.1.

1.6 Eddington Luminosity

For a steady, spherical flow of fully ionised hydrogen accreting onto a BH of mass M , the
Eddington luminosity LEdd is that whereby the radiation pressure balances the gravitational
force. Radiation pressure is mainly exerted on the electrons, as their Thomson cross section
σT is (mp/me)

2 = 3 × 106 greater than protons’, but the electrons will drag the protons
electrostatically so that the radiation pressure on the electrons is essentially felt by the protons
as well. Setting the rate at which momentum is being absorbed by protons (via electrons)
equal to the gravitational force on them, we have

LEdd

c

σT

4πr2
=

GMmp

r2
⇒ LEdd =

4πGMmpc

σT

= 1.3 × 1031

(
M

M⊙

)
W

SMBH luminosities are observed up to 1041W, suggesting masses of M ∼ 1010M⊙. We can
also define the Eddington accretion rate ṀEdd ≡ LEdd/εc

2. Now because L ∝ Ṁ , we have that
Ṁ ∝ M , suggesting exponential growth for BHs accreting at the Eddington luminosity.

3It can be written ṀBH if you don’t have a coloured pencil handy.
4GR effects show that maximally spinning BHs are not possible: a can only actually get up to 0.998rG,

which turns out to give the significantly lower ε = 0.3
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2 Seed Formation

The SMBHs in the Universe today have grown from seeds by accretion and mergers. It is
uncertain exactly how these seeds form: it may be from massive Population III stars, the
runaway collapse of star clusters, or even directly through the gravitational collapse of gas.

2.1 Star Cluster Formation

Although a seemingly unrelated process, the process of star formation is important to under-
stand all three seed formation processes: the formation of Pop. III stars, the formation of star
clusters, and fundamentally this is all about the collapse of gas.

The virial theorem gives a bulk relationship between the different kinds of energy in a
gravitating system: 2T + Ω = 0, where T is the total kinetic energy (both bulk and microscop-
ic/internal, including e.g. gas pressure), and Ω is the potential energy. Consider a spherical
cloud of uniform density ρ and temperature T . Its potential and kinetic energy will be

Ω =

∫ R

0

−G

r
· 4

3
πr3ρ · 4πr2ρ dr = −16π2Gρ2

3

R5

5
= −3

5

GM2

R
= −3

5

(
4

3
πρ

)1/3

GM5/3

T =

∫
1

γ − 1
p dV =

3kT

2µmp

M

where we have taken γ = 5/3, assuming atomic H. For the cloud to collapse, we require
|Ω| > 2T , so that the cloud’s gravity overcomes outward gas pressure. This condition is

3

5

(
4

3
πρ

)1/3

GM5/3 >
3kT

µmp

M ⇒ M >

√
375

4πρ

(
kT

µmp

)3

∝

√
T 3

ρ

where the critical mass MJ is the Jeans mass. If any volume exceeds this mass it will collapse.
Depending on the opacity of the cloud, the gravitational energy released during collapse

may or may not be able to be radiated away. As such the collapse may be isothermal or
adiabatic.

• Isothermal collapse. The cloud must be metal-rich (Z ≳ 10−3Z⊙ = 10−5) to radiate
away heat generated and maintain constant temperature. In this regime we have MJ ∝
ρ−1/2, so as the cloud contracts and its density increases, the threshold for collapse
decreases, enabling smaller regions of the cloud to collapse. The cloud thus fragments.

• Adiabatic collapse. Eventually, the density increases enough that the cloud’s opacity
reaches the opacity limit and cooling becomes inefficient; the cooling time becomes longer
than the collapse time. We then have p ∝ ρ5/3 ⇒ T ∝ ρ2/3 ⇒ MJ ∝ ρ1/2. The cloud is
no longer susceptible to fragmentation, collapsing monolithically into a constant number
of bodies. The density and temperature continue to rise until T reaches about 100K, at
which point MJ ∼ 103M⊙, and the transitions of any H2 in the gas allow it to cool, ending
adiabaticity. If the cloud is able to collapse further before the onset of e.g. nuclear fusion,
its MJ will decrease and it may fragment. As such the maximum mass of a population
III star is ∼ 103M⊙.

In a low-Z cloud, the above process forms a cluster of enormous stars. These stars run out of
fuel in a few Myr, forming large stellar mass BHs. Alternatively, they may collide with other
stars, disrupting their fusion processes and forming a large BH.
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2.2 Cluster Dynamics

2.2.1 Relaxation

Consider a cluster of radius RC of N identical stars of mass M . Let one star pass by another
in the x-direction at a large impact parameter b, such that its x-directed velocity v remains
roughly constant. It will be deflected in the y-direction by the interaction. The y-directed
force experienced will be

Fy =
GM2

r2
b

r
=

GM2b

(b2 + x2)3/2
=

GM2b

(b2 + v2t2)3/2

⇒ δvy =
1

M

∫ ∞

−∞
GM2b

dt

(b2 + v2t2)3/2
=

2GM

bv

As the star passes through the cluster, it will see a surface density of stars of order N/πR2
C .

If passing through the centre, the number of interactions at impact parameters between b and
b+ db will be (N/πR2

C) · 2πb db. The mean deflection δvy will of course be 0 by symmetry, but
the mean square deflection will not:

δv2 =

∫ bmax

bmin

δv2y(b)
N

πR2
C

· 2πb db =
8NG2M2

R2
Cv

2
ln Λ

where the Coulomb parameter Λ ≡ bmax/bmin. We can approximate bmax ∼ RC and bmin as
the b such that δvy = v ⇒ bmin = 2GM/v2. This gives a value of Λ = RCv

2/2GM . Now the
typical speed of a particle in a virialised system is such that

2T + Ω = 0 ⇒ NMv2 =
G(NM)2

RC

⇒ v2 =
GNM

RC

⇒ δv2 =
8GM

RC

ln

(
N

2

)
This is the mean square change in velocity when the star crosses the cluster once. After a
certain number of crossings, nc, the change in the square velocity ncδv

2 will become of order
v2, the initial velocity, at which point the cluster is said to become relaxed : information about
the initial conditions is lost. We find

nc =
v2

δv2
=

GNM

RC

RC

8GM ln (N/2)
=

N

8 ln (N/2)
⇒ trelax ∼ nc ·

RC

v
=

N

8 ln (N/2)

RC

v

2.2.2 Evaporation

In reality, stars in a cluster will have a distribution of speeds. Some stars will have a speed
greater than the cluster’s escape velocity, and will therefore be able to leave the cluster. The
escape velocity is at a given point vesc =

√
−2Φ. The mass-averaged escape velocity is then

〈
v2esc
〉
ρ
≡
∫
ρv2esc d3r∫
ρ d3r

= − 2

MC

∫
ρΦ d3r = − 4Ω

MC

where we have used Ω = 1
2

∫
ρΦ d3r and the cluster mass MC ≡

∫
ρ d3r. Now the mean velocity

is given by the virial theorem, 2T + Ω = 0:

T =
∑ 1

2
Miv

2
i =

1

2
MC

〈
v2
〉
ρ

⇒ MC

〈
v2
〉

=
1

4
MC

〈
v2esc
〉

⇒
〈
v2esc
〉

= 4
〈
v2
〉

5



Thus stars with speeds > 2× the rms velocity will be able to escape. For a Maxwell-Boltzmann
distribution this escape fraction is approximately 7 × 10−3. This fraction of stars escape on
roughly a relaxation timescale. The evaporation timescale of the cluster would then be of order
trelax/7 × 10−3.

The total energy of the cluster can be written E = T + Ω; using Ω = −2T we have E =
−T ⇒ ∂E/∂T = −1. As the kinetic energy T is a measure of the “dynamical temperature”
of the system, the system effectively has a negative heat capacity. Therefore, as energy is
carried away from the cluster by evaporating stars, the temperature and average KE of the
cluster actually increases, meaning that more stars are then able to escape the cluster. . . a
positive feedback loop is established, which formally would lead to the total evaporation of the
cluster in a so-called gravithermal catastrophe in a finite amount of time. However, at a certain
point several processes (including the formation of binary systems, three-body encounters, and
stellar winds) save the cluster from total evaporation, and the cluster ends up with a small
high-density and high-temperature core.

With high stellar densities and speeds, head-on stellar collisions would be relatively frequent,
leading to very massive (∼ 103M⊙) stars which will form SMBH seeds. The rest of the cluster
core is soon accreted onto the BH, allowing it to grow into an SMBH. N -body codes suggest
this to be the most realistic scenario for SMBH seed formation.

2.2.3 Dynamical Friction & Mass Segregation

We have so far considered a cluster with stars of equal mass, which is not realistic. A next-order
assumption would be a cluster with two populations, with stars of masses M and m.

If M ≫ m, such as a BH moving through a sea of field stars (or even H atoms), the effect
of the ms will be a drag force on M . Chandrasekhar derived the following formula:

dvM

dt
= −16π2G2Mm ln Λ

(∫ vM

0

f(vm)v2m dvm

)
vM

v3M

where f(vm) is the distribution of speeds of the ms. Via the upper bound of the integral,
dvM/dt depends in a complicated way on vM , but becomes simpler in limiting cases. If vM ≪
⟨vm⟩, then f(vm) ≈ f(0) for the entire integral, and so the integral becomes approximately
proportional to v3M and we have dvM/dt ∝ −vM . In the fast limit vM ≫ ⟨vm⟩, the upper
bound can be approximated at infinity, and the integral becomes proportional to the number
density n =

∫∞
0

4πv2mf(vm) dvm; we then have dvM/dt ∝ −v−2
M .

Dynamical friction leads to a segregation of the masses M and m in a cluster. Again taking
the analogy of stars and gas particles, a result of the equipartition theorem is that the kinetic
energy (not the total energy) is shared between all objects. As such, larger masses must have
a lower ⟨v2⟩ to have the same KE as the smaller stars; if this is not the case then dynamical
friction will transfer energy from the large masses to the smaller masses. As the large masses
lose energy, they will sink towards the centre of the cluster and fling the smaller masses to the
outside. This segregation apparently occurs on a timescale ∼ trelax(m/M) ≪ trelax, which is
quite fast, and clearly this segregation will accelerate the process of evaporation and SMBH
seed formation, by helping the contraction of the core.
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3 Accretion

3.1 So ltan’s Argument

In the high-redshift Universe we see accreting SMBHs as AGN. The AGN luminosity function
Φ(L, z) is the number density of AGN per luminosity per redshift; observationally, biases and
the obscuration of the AGN must be accounted for, giving an uncertainty of a factor of ∼ 2.

So ltan argued that the mass density of SMBHs today should be equal to the integrated
mass accreted by all those SMBHs through time; that is

ρSMBH(now) =

∫ ∞

0

dz

∫ ∞

0

dLΦ(L, z)
dM

dz
=

∫ ∞

0

dz

∫ ∞

0

dLΦ(L, z)
dt

dz
Ṁ

This can be simplified using the earlier result that L = (ε/(1 − ε))Ṁc2:

⇒ ρSMBH(now) =
1 − ε

εc2

∫ ∞

0

dz

∫ ∞

0

dLΦ(L, z)L

Note that the inner luminosity integral gives the total AGN luminosity per redshift.

3.2 Bondi Accretion

Bondi accretion is the accretion of gas of ambient density ρ∞ onto a mass M , assuming:

• Steady State

• Spherical symmetry

• Negligible AM

• Negligible magnetic field

• Negligible viscosity

• Negligible turbulence

• Negligible radiation field

• Point mass potential

• No self-gravity or DM

We seek the mass accretion rate Ṁ = −4πr2ρu (remember, Ṁ ̸= Ṁ), which is constant in the
steady state. Thus:

d ln Ṁ

dr
= 0 ⇒ 2

r
+

d ln ρ

dr
+

d lnu

dr
= 0 (1)

The momentum equation gives

u
du

dr
= −1

ρ

dp

dr
− GM

r2
⇒ u2d lnu

dr
= −c2s

d ln ρ

dr
− GM

r2
(2)

or, ⇒ d

dr

[
1

2
u2 +

∫
dp

ρ
− GM

r

]
︸ ︷︷ ︸

Bernoulli constant

= 0 (3)

Using (1) to eliminate d ln ρ/dr from (2), we find

(
u2 − c2s

)d lnu

dr
=

2c2s
r

(
1 − GM

2c2sr

)
We see that there may be a sonic radius rs = GM/2c2s where u = −cs. Thus we can write

Ṁ = 4π

(
GM

2c2s

)2

ρscs = π
G2M2

c3s
ρs

7



The only remaining unknowns are cs and ρs, which can both be found using the Bernoulli
constant, in a way depending on the equation of state. In the general polytropic case, we have
p = Kρ1+1/n, and so c2s = n+1

n
ρ1/n and

∫
dp /ρ = (n+1)Kρ1/n = nc2s. Note that cs is a function

of radius: we write cs = cs∞ and css at infinity and the sonic point. The Bernoulli constant,
compared at r = ∞ and r = rs, gives

1

2
u2
∞︸︷︷︸
0

+nc2s∞ =
1

2
c2s + nc2ss −

GM

rs︸︷︷︸
2c2ss

⇒ c2ss =
n

n− 3/2
c2s∞ ⇒ ρs =

(
n

n− 3/2

)n

ρ∞

⇒ Ṁ = π
G2M2

c3ss
ρs = π

(
n

n− 3/2

)n−3/2
G2M2

c3s∞
ρ∞

n→∞−−−→ πe3/2
G2M2

c3s
ρ∞

where the n → ∞ limit corresponds to the limit of isothermal accretion at constant cs. The
important n → 3/2 limit, corresponding to γ = 5/3, causes the bracket to tend to 1.

The more general Bondi-Hoyle-Lyttleton5 accretion model assumes that M moves through
the ambient gas with a speed v∞. This replaces cs∞ in the above equations with

√
c2s∞ + v2∞.

3.2.1 Radiative Efficiency

Define the “accretion radius” racc ≡ 2GM/c2s∞. For r ≪ racc, we expect gravity to dominate
the flow, and so u(r) ≈ −

√
2GM/r ∝ r−1/2. Now Ṁ ∝ r2ρu is a constant, so ρ ∝ r−3/2 for

small r. For an adiabatic flow with γ = 5/3, T ∝ ργ−1 = ρ2/3 ∝ r−1, so the gas will heat
up as r → 0. Due to these high temperatures, the gas will likely become a plasma and emit
radiation by Bremsstrahlung. The luminosity per unit volume of Bremsstrahlung is given by
4πj0n

2
eT

1/2, so the total Bremsstrahlische luminosity will be

L =

∫ racc

rh

4πj0n
2
eT

1/2 · 4πr2 dr = 16π2j0

∫ racc

rh

[
nacc

(
r

racc

)−3/2
]2[

T acc

(
r

racc

)−1
]1/2

r2 dr

= 16π2j0n
2
accT

1/2
accr

7/2
acc

∫ racc

rh

r−3/2 dr ≈ 32π2j0
[
n2T 1/2r7/2

]
acc

r
−1/2
h

where in the final approximation we have assumed that rh ≪ racc, i.e. cs∞ ≪ c. Now racc =
2GM/c2s∞ ∝ MT−1

∞ ; approximating nacc ≈ n∞ etc., we can then write L ∝ n2
∞M3T−3

∞ . We can
also find that the radiative efficiency ε is

ε =
L

Ṁc2
=

L

c2
c3s∞

πG2M2ρ∞
∝ n2

∞M3T−3
∞

T
3/2
∞

M2n∞
∝ n∞MT−3/2

∞ ∝ L1/2

M1/2
∝
√

L

LEdd

where we have used the fact that LEdd is proportional to M alone. The proportionality constant
between ε and

√
L/LEdd is apparently 0.009, so even if L ∼ LEdd, the radiative efficiency of

Bondi accretion is much lower than the observed values of ∼ 0.1.
In fact, we can show that L ≪ LEdd, making things worse. The optical depth to radius r is

τ = σT

∫ ∞

r

ne dr ≈ σTnaccr
3/2
acc

∫ ∞

r

r−3/2 dr = 2σTnaccr
3/2
acc r

−1/2 = 2σT
ρ∞
mp

(
GM

c2s∞

)3/2

r−1/2

5For some reason loads of people spell his name Littleton, which is literally incorrect. Also, turns out his
secondary school was the rival of my secondary school. Mad.
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=
8πGMc

LEdd

Ṁ

π
√
GM

r−1/2 =
8Ṁc2

LEdd

√
GM

c2
r−1/2 =

8

ε

L

LEdd

(
r

rh

)−1/2

≈ 8

0.009

L

LEdd

√
rh
r

So the optical depth to the horizon will be ∼ ε−1 ∼ 102. The radiation produced by the
Bremsstrahlung will therefore be trapped in the “radiatively inefficient” flow and dragged into
the BH. We will only be able to see the radiation produced down to some radius r ≫ rh.

Suppose a photon has a mean free path λ and is trying to diffuse outwards. We define a
characteristic trapping radius rt, at which the outward diffusion velocity is approximately equal
to the infalling flow: within this radius, the gas will be infalling faster than the photon is able
to diffuse outwards and the photon will be dragged inwards. The speed of the infalling gas at
rt will approximately be

√
2GM/rt; we now derive the outward diffusion speed. The distance

it travels after N scatterings will be D =
√
Nλ, according to standard diffusion theory. The

optical depth, qualitatively defined as the number of mean free paths that fit into the path in
question, is therefore τ = D/λ =

√
N . The diffusion velocity is then

vd ∼
D

Nλ/c
=

c
√
Nλ

Nλ
=

c√
N

=
c

τ
⇒

√
2GM

rt
=

c

τ(rt)
∼ cε

8

√
LEdd

L

rt
rh

⇒ rt ∼
8

ε

LEdd

L
rh ∼ 102LEdd

L
rh

So if L ∼ LEdd, any radiation generated within ≲ 102rh (which is where a lot of the radiation
is generated) is trapped and dragged into the BH. This suggests that Bondi accretion is not a
very good model for the accretion processes occurring in AGN, because we can see them.

3.3 Disks

In this section we look at axisymmetric planar inflows, where the material forms a disk and
inspirals as its energy is dissipated by viscosity.

3.3.1 Steady-State Thin Disk Solution

In steady state, the mass conservation equation becomes:

1

r

∂

∂r
(rΣur) = 0 ⇒ Ṁ = −2πrΣur = const.

as we are now working in 2D6. The radial and azimuthal Navier-Stokes equations are

∂ur

∂t︸︷︷︸
0

+ur
∂ur

∂r
−

u2
ϕ

r
= −1

ρ

∂p

∂r
− GM

r2
; Σ

(
∂uϕ

∂t︸︷︷︸
0

+ur
∂uϕ

∂r
+

uruϕ

r

)
=

1

r2
∂

∂r

(
ν̄Σr3

dΩ

dr

)
where as usual Ω = uϕ/r and Σ =

∫
ρ dz. Rearranging for ur in the second equation gives

ur =
d
dr

(ν̄Σr3 dΩ/dr )

r2Σ(duϕ/dr + uϕ/r)
= − 3

Σr1/2
∂

∂r

(
ν̄Σr1/2

)
But we also have ur = −Ṁ/2πrΣ, so we can write

− Ṁ

2πrΣ
= − 3

Σr1/2
d

dr

(
ν̄Σr1/2

)
⇒ d

dr

(
ν̄Σr1/2

)
=

Ṁ

6πr1/2

6We keep r as the coordinate in consistency with the Disks course

9



This can be integrated from some inner radius r∗ at which ν̄Σ = 0 (such as rISCO where Σ → 0):

(ν̄Σ)(r) =
1

r1/2
Ṁ

3π

(
r1/2 − r1/2∗

)
=

Ṁ

3π

(
1 −

√
r∗
r

)

⇒ ur(r) = − 3ν̄

ν̄Σr1/2
∂

∂r

(
ν̄Σr1/2

)
= −3ν̄

3π

Ṁ
(

1 −
√
r∗/r

)
r1/2

Ṁ

6πr1/2
= −3ν̄(r)

2r

(
1 −

√
r∗
r

)−1

We assume that T is independent of z. In hydrostatic equilibrium we then have:

1

ρ

∂p

∂z
=

GM

r2
z

r
⇒ c2s

∂ρ

∂z
= Ω2zρ ⇒ ρ(r, z) = ρ(r, 0) exp

(
− z2

2H2

)
, H ≡ cs

Ω

defining the characteristic scale height of the disk. We can then estimate ρ ∼ Σ/H.
The rate of energy dissipation per unit area is given (over a single face of the disk) by

D(r) =
1

2
ν̄Σ

(
r

dΩ

dr

)2

=
3GMṀ

8πr3

(
1 −

√
r∗
r

)
This needs to match with how the temperature structure T (z) changes in the disk. The flux
through a surface is related to the temperature gradient by

F (r, z) = −16σT 3

3κ̄ρ

∂T

∂z
= − 4σ

3κ̄ρ

∂T 4

∂z

⇒ D(r) ≈ F (r,H) − F (r, 0) ≈ −F (r, 0) =
4σ

3κ̄ρ|0
∂T 4

∂z

∣∣∣∣
0

∼ 4σ

3τ
T (r, 0)4

3.3.2 Shakura-Sunyaev Solution

We now assess the importance of the viscosity, through the Reynolds number, the approximate
ratio of the inertial terms in the Navier-Stokes equation to the viscous terms. It is found
experimentally that if Re is above about 2 000 then turbulent flows set in. The least turbulent
accretion disk conditions give Reynolds numbers of ∼ 1014, so viscosity is definitely important.

Turbulence is a series of eddies, wherein the fluid elements move chaotically at speeds ∼ ve
around length scales ∼ λe; the viscosity is then ν̄ ∼ λeve. Now the eddies have to fit into
the disk, so we expect λe ≲ H. We also expect ve ≲ cs, else it would quickly shock until it
was. Shakura and Sunyaev therefore prescribed ν̄ = αcsH to collect the uncertainties on how
turbulence works into the parameter α, which we expect to be < 1.

We can use this parameter to make order-of-magnitude estimates of important parameters:

• ur. The work in the previous subsection suggests ur ∼ ν̄/r ∼ α(H/r)cs ≪ cs. We thus
expect the radial motion to be highly subsonic and quite slow.

• uϕ. Vertical hydrostatic equilibrium gives

1

ρ

∣∣∣∣∂p∂z
∣∣∣∣ ∼ GMz

r3
⇒ c2s

H
∼
(uϕ

r

)2
H ⇒ uϕ ∼ r

H
cs

so we expect aximuthal motion to be highly supersonic.
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• Departures from Keplerian motion. The Mach number M ≡ uϕ/cs; we have M ∼ r/H
from the above. The centripetal force is mostly gravitational but offset by the radial
pressure gradient. Compared to the gravitational force, this offset will be of order

1

ρ

∂p

∂r

r2

GM
∼ c2s

u2
ϕ

∼ M−2

Thus uϕ =
√

GM/r[1 + O(M−2)], so we can reasonably assume Keplerian motion.

We have now found 9 equations (some approximate...) in 9 unknowns (ρ,Σ, H, cs, p, τ, κ̄, T c, ν̄)

ρ =
Σ

H
, H =

cs√
GM/r3

, c2s = p/ρ, τ = Σκ̄(ρ, T c), ν̄ = ν̄(ρ, T c,Σ, α),

p =
ρkT c

µmp

, ν̄Σ =
Ṁ

3π

(
1 −

√
r∗
r

)
, ur = −3ν̄

2r

(
1 −

√
r∗
r

)−1

,

3GMṀ

8πr3

(
1 −

√
r∗
r

)
=

4σ

3τ
T 4

c

where T c ≡ T (r, 0), and the variables r,M, Ṁ, α are treated as parameters. Note also that
we have neglected radiation pressure in favour of gas pressure – this is revisited in the next
subsection. To solve this set of equations, the functional forms of ν̄ and κ̄ need to be specified:
a standard choice is ν̄ = αcsH and κ̄ ∝ ρT

−7/2
c (Kramers’ opacity law).

The analytic solution is complicated, but important results include:

• The solution is not very sensitive to α, which enters with |powers| of at most 1. This is
nice, because we don’t really know α.

• H ∼ r9/8 ⇒ H/r ∼ r1/8. The disk therefore flares outwards. Also the proportionality
constant is ∼ 10−2, so the disk is indeed thin, and stays thin out to large r.

• Σ ∼ r−3/4. Integrating Mdisk =
∫ r

r∗
2πrΣ dr out to some reasonable cutoff, apparently the

disk has a total mass Mdisk ∼ 10−10M⊙ ≪ M , justifying our neglect of self-gravity.

3.3.3 Radiation-Pressure-Dominated Regions

The Shakura-Sunyaev solution also shows that radiation pressure does in fact dominate over

gas pressure below a certain cutoff radius rrad ∼ M11/21Ṁ
16/21

: that is, the larger M or Ṁ , the
larger the radiation-dominated region. Thus the inner regions of disks around NSs and BHs
are expected to be dominated by radiation pressure. This turns out to be very important: we
now show that this leads to the disk no longer being thin. We have H = cs/Ω, where

c2s =
p

ρ
=

1

ρ

4σT 4
c

3c
=

1

ρc

3GMṀ

8πr3

(
1 −

√
r∗
r

)
︸ ︷︷ ︸

g(r)

τ =
3GMṀ

8πρcr3
g(r) Σ︸︷︷︸

∼ρH

κ̄︸︷︷︸
∼σT /mp

≈ 3GMṀHσT

8πcmp

g(r)

r3

⇒ H2 =
c2s
Ω2

≈ 3ṀHσT

8πcmp

g(r) ⇒ H ≈ 3ṀσT

8πcmp

(
1 −

√
r∗
r

)
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This can be written in terms of a critical accretion rate, achieved when accreting at around
the Eddington rate:

LEdd ≡ ε
GMṀ crit

r∗
⇒ Ṁ crit =

LEdd

ε

r∗
GM

=
r∗

εGM

4πGMmpc

σT

=
4πmpc

εσT

r∗

⇒ H ≈ 3

2ε

Ṁ

Ṁ crit

(
1 −

√
r∗
r

)
r∗

Thus if Ṁ is significantly greater than εṀ crit then H will be ∼ r for small r. As such the
disk is no longer thin: radiation pressure puffs out the inner disk into almost even a spherical
shape. This may obscure the inner regions of the disk.

3.3.4 Thick & Slim Disks

The most basic possible non-thin disk model has no accretion and is purely rotational: ur =
uz = 0, uϕ = rΩ for some non-necessarily-Keplerian Ω; mass conservation is automatically
satisfied. The components of the momentum equation become:

1

ρ

∂p

∂r
= −∂Φ

∂r
+ Ω2r

1

ρ

∂p

∂z
= −∂Φ

∂z
⇒ 1

ρ
∇p = −∇Φ + Ω2R ≡ geff

where R = rêr, defining the effective gravity vector, which we see must be perpendicular to
isobaric surfaces. Let’s assume that the pressure is dominated by radiation pressure:

p ≈ prad =
4σ

3c
T 4, F = −16σT 3

3κ̄ρ
∇T = − c

κ̄ρ
∇p = − c

κ̄
geff =

c

κ̄
∇Φ − c

κ̄
Ω2R

One can then calculate the total luminosity L ≡
∫
D F · dS, where D is the surface of the disk.

Continuing with steady axisymmetric flows, we now allow for some small non-zero poloidal
velocity uP = (uR, uz), with a magnitude much smaller than uϕ. Note that axisymmetry means
∇ = ∇P , so e.g. u · ∇ = uP · ∇ = uP · ∇P . Continuity, and the toroidal component of the
Navier-Stokes equation are now

1

r

∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0, (uP · ∇P )uϕ +

ur

r
uϕ = (∇ · σ)ϕ

The “slim disk” solution involves integrating all the terms in the z-directions out to infinity.
If limz→±∞ ρuz = 0, then the continuity equation gives rΣur = const. = −Ṁ/2π as familiar.
Doing the same averaging to the toroidal Navier-Stokes gives:

ur
∂uϕ

∂r
+

uruϕ

r
=

1

Σr2
∂

∂r

(
ν̄Σr3

dΩ

dr

)
⇒ Σrur

∂

∂r
(rur) =

∂

∂r

(
ν̄Σr3

dΩ

dr

)
As Σrur is a constant, this equation can be integrated:

Σrur[rur]
r
r∗

= ν̄Σr3
dΩ

dr
⇒ ur(ℓ− ℓ∗) = ν̄r2

dΩ

dr

where we have defined ℓ ≡ rur = r2Ω and used the fact that there is no torque at the inner
boundary. Substituting out ur with Ṁ , we find the angular momentum as a function of radius:

− Ṁ

2πrΣ
(ℓ− ℓ∗) = ν̄r2

dΩ

dr
⇒ ℓ = ℓ∗ −

2πr3ν̄Σ

Ṁ

dΩ

dr
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4 Winds

AGN can drive strong ionised winds into their host galaxies. Consider a steady spherically-
symmetric flow, with outflow speed v; the rate of mass transfer of the wind will be Ṁ = 4πr2ρv
(written as ṀW if you’re boring). The momentum equation is then simply:

v
dv

dr
= arad −

GM

r2

where arad is the acceleration due to radiation pressure; we neglect gas pressure. The form of
arad is generally very complicated, with κν having contributions from bound-bound, bound-free,
free-free, and Compton processes. Because that’s a lot of opacities to deal with, we simplify
things using a quantity called the dimensionless force multiplier M:

M(r) ≡ arad, all(r)

arad, Compton(r)
; arad, Compton(r) =

ne(r)σTL

4πr2ρ(r)c

so we only have to worry about the easy Compton effects and a factor M ≥ 1, with equality
if the gas is fully ionised. We can then simplify:

v
dv

dr
=

ne

ρ︸︷︷︸
1/µmp

σTL

4πr2c
M− GM

r2
=

σTL

4πr2µmpc

(
M− 1

L

4πGMµmpc

σT

)
=

σTL

4πr2µmpc

(
M− LEdd

L

)

Now to accelerate a wind, dv/dr should be positive, so for sub-Eddington luminosities L <
LEdd, we require a large M to outweigh LEdd/L; physically, we require a powerful radiation
flux (M) to overcome gravity (LEdd ∝ GM).

Suppose an AGN has an “Eddington wind”: L = LEdd and the wind has Ṁ = ṀEdd.
Suppose also that the inner wind has τ = 1, so that the photons emitted by the AGN scatter
once on average before escaping. This means that the average photon will transfer 100% of its
momentum to the wind, and the rate of momentum transfer to the wind is ṗW = LEdd/c. But
ṗW ≡ Ṁv = ṀEddv, so

v =
LEdd

ṀEddc
=

εṀEddc
2

c
= εc ∼ 0.1c

These not-too-unreasonable assumptions lead to very fast winds!

4.1 Energy- and Momentum-
Driven Winds

Figure 2 | Geometry of an AGN wind.

Clearly AGN winds can be highly supersonic.
As they clatter into the ISM, a discontinuity
will form as the ISM (made of gas) can’t react
quickly enough to communicate to gas further
out: a forward shock then sweeps the gas out-
wards into the ISM. Also, news of the collision
will propagate backwards through the wind,
in a reverse shock. This is all shown in Figure
2. The mechanism behind the propagation of
the shock depends on how fast the shocked
wind is able to cool, by radiation.
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If heating is inefficient, then the energy of the wind gets transferred to the shocked material,
which then expands (adiabatically) on both sides of the discontinuity; the reverse shock makes
it most of the way back to the BH. Such winds are driven by the adiabatic expansion of the
shocked shell of ISM, and are hence called energy-driven winds. By contrast, if cooling is
efficient, then the KE is pretty much all dissipated as soon as it hits the reverse shock. As
such, the wind material inside the shock doesn’t gain much energy, and remains very thin. The
shock is then powered simply by the momentum of the wind slamming into it.

We now develop mathematical models of the propagation of these winds. I don’t think
they’re very rigorous, and it’s not always clear what radius in Figure 2 we’re talking about,
but oh well. In each case we will model the galaxy in which the AGN is embedded as a singular
isothermal sphere, of total density ρ(r) = σ2/2πGr2. This includes dark matter, so the gas
density, which we will assume to be a constant fraction (fg ≲ Ωbaryon/ΩDM ≈ 0.16) of the total
density, will be fgρ(r). The total mass (inc. DM) contained within a radius r will be:

Mt(< r) =

∫ r

0

4πr2
σ2

2πGr2
dr =

2σ2

G
r

whereas the mass of the shocked shell, swept up entirely from the interior of the reverse shock,
is Ms(r) = 2fgσ

2r/G. Note that we have neglected the mass of the black hole itself, as we will
generally be looking at large radii within which the enclosed DM mass ≫ M .

4.1.1 Energy-Driven Winds

The energy produced by an Eddington wind is Ė = 1
2
ṀEddv

2 ≈ 1
2
LEdd

εc2
(εc)2 = ε

2
LEdd. This

energy will be converted into the internal and potential energy of the shocked material (wind
and ISM), as well as the p dV work it does on the ISM:

ε

2
LEdd = U̇s +

GMt(< r)Ms(r)

r2
ṙ + pV̇ , Us =

pV

γ − 1
,

where r is the radius of the forward shock, V = 4
3
πr3 as the reverse shock expands back almost

to r = 0, and p can be found from force balance on the surface of the forward shock:

4πr2p =
d

dt
[Ms(r)ṙ] +

GMs(r)Mt(< r)

r2

Substituting everything in, neglecting M in Mt(< r), and taking γ = 5/3, one finds

ε

2
LEdd = 2fg

σ2

G

[
1

2
r2

...
r + 3rṙr̈ +

3

2
ṙ3
]

+ 10fg
σ4

G
ṙ

It turns out this admits solutions where the shell coasts outwards at constant speed: r̈ =
...
r = 0.

Consider the case where this constant speed ṙ is the escape velocity of the galaxy, which is at
every radius 2σ – that is, we consider marginally outbound solutions. This gives

ε

2
LEdd =

44fgσ
5

G
⇒ M ∝ σ5

– an example of an M -σ relation, which AGN scientists like because they allow estimation of
the mass of a galaxy’s SMBH from the galaxy’s velocity dispersion, which is relatively easy to
measure.
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4.1.2 Momentum-Driven Winds

The equation of motion is, assuming L = LEdd,

d

dt
[Ms(r)ṙ] =

LEdd

c
− GMt(< r)Ms(r)

r2

Substituting everything in as before, we find:

d

dt
(rṙ) = −2σ2

(
1 − M

Mσ

)
, Mσ ≡ fgσTσ

4

πG2mp

∝ σ4

(×rṙ) ⇒ rṙ
d

dt
(rṙ) = −2σ2

(
1 − M

Mσ

)
rṙ ⇒ 1

2

d

dt

(
r2ṙ2

)
= −σ2

(
1 − M

Mσ

)
d

dt

(
r2
)

⇒ r2ṙ2 = −2σ2

(
1 − M

Mσ

)
r2 + const. ⇒ ṙ2 ≈ −2σ2

(
1 − M

Mσ

)
for large r. Now this necessitates M > Mσ; physically this means that the BH luminosity must
push the shocked material more strongly than it is attracted in by the galactic potential. If
M < Mσ, a wind will not be supported and some sort of Bondi accretion process will ensue –
M will rise until it reaches Mσ. At this stage, its winds will prevent further accretion and the
mass will stabilise at M ≈ Mσ ∝ σ4, another M -σ relation. Observationally, d lnM/d lnσ =
4.4 ± 0.3, so we’re on the right lines with these two solutions.

4.2 Radiation-Driven Winds

A third possibility for the acceleration of winds is by radiation pressure. The force due to
radiation pressure at a particular wavelength λ is:

fλ =

∫
Lλ

c

κλ · 4πr2ρ dr

4πr2
=

(∫
κλρ dr

)
Lλ

c
= τλ

Lλ

c

This multiplicative factor of τ arises due to there being several photon reflection events in an
optically thick medium: each outgoing photon reflects off the inside of the shock, imparting
its momentum, races to the other side of the sphere, reflects again, imparting its momentum
again... this happens an average of τ times, so each photon imparts its momentum τ times.
The total radiative pressure force, over all wavelengths is apparently (1 − e−τUV + τIR)L/c, so
that for τIR, τUV ≪ 1, this tends to τUVL/c which is good for some reason.

An analogous calculation to the energy- and momentum-driven solutions apparently gives
a lower limit to the UV luminosity required to launch an unbound wind:

τUV = 1, τIR = 0 ⇒ Lσ =
4fgcσ

4

G

If one sets this equal to the Eddington luminosity, one finds that the critical mass Mσ is in fact
the same as that found when considering momentum-driven winds, which makes sense as the
equation at the start of that derivation assumed a radiation force of LEdd/c, corresponding to
a single scattering event of each photon (τ = 1).
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