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1 Orbital Dynamics

The Lagrangian L for orbits in an axisymmetric disk is

L =
1

2

(
ṙ2 + r2ϕ̇2 + ż2

)
− Φ(r, z)

From ∂L/∂ϕ = ∂L/∂t = 0, calculus of variations gives the two conserved quantities:

∂L
∂ϕ̇

= h ≡ r2ϕ̇
∑

q̇i
∂L
∂q̇i

− L = ε ≡ 1

2

(
ṙ2 + r2ϕ̇2 + ż2

)
+ Φ

the specific AM and energy. The Euler-Lagrange equations in the r and z directions give:

r̈ = rϕ̇2 − ∂rΦ z̈ = −∂zΦ Now define: Φeff ≡ h2/2r2 + Φ

⇒ r̈ = −∂rΦeff z̈ = −∂zΦeff Also: ε =
1

2

(
ṙ2 + ż2

)
+ Φeff

Consider circular midplane orbits. These require

0 = ∂rcΦeff ⇒ h2

r3
= ∂rcΦ; 0 = ∂zcΦeff ⇒ ∂zcΦ = 0

where ∂ic is the i-derivative evaluated at the circular orbit at (r, 0). The second condition
is automatically satisfied as we assume Φ(r, z) = Φ(r,−z). The first condition shows that
∂rcΦ > 0 is required for circular orbits, and gives an expression for the AM of circular orbits
of radius r in a given Φ, and more:

hc(r) =
√
r3∂rcΦ ⇒ Ωc(r) =

hc
r2

=

√
∂rcΦ

r
; εc(r) =

1

2
r∂rcΦ + Φ =

h2c
2r2

+ Φ

An important property of disks is that adjacent orbits move at different speeds. We define
the shear rate S(r) ≡ −r dΩc/dr , which has dimensions of inverse time.

The equations of motion give the following oscillatory evolution of deviations δr and δz
from circular orbits, at the frequencies Ωr and Ωz

δ̈r = −∂2rrcΦeffδr ⇒ Ω2
r ≡ ∂2rrcΦeff δ̈z = −∂2zzcΦeffδz ⇒ Ω2

z = ∂2zzcΦeff

Now ∂zΦeff = ∂zΦ, so we could just write Ω2
z = ∂2zzcΦ. Ωr however can also be written

Ω2
r =

3h2c
r4

+ ∂2rrcΦ =
3h2c
r4

+
d

dr

(
h2c
r3

)
=

1

r3
dh2c
dr
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=
1

r3
d(r4Ω2

c)

dr
= 4Ω2

c + 2rΩc
dΩc

dr
= 2Ωc(2Ωc − S)

with the interesting results at the ends of the above lines.
If Ωr ̸= Ωc, orbits will precess. Periapses occur in time intervals ∆t = 2π/Ωr, in which

time ϕ has changed by Ωc∆t = 2π(Ωc/Ωr − 1) mod 2π, so the apsidal precession rate is
∆ϕ/∆t = Ωc − Ωr. Similarly the nodal precession rate is Ωc − Ωz.

Keplerian orbits, with Φ(r, z) = −GM/
√
r2 + z2, have the following properties:

hc =
√
GMr Ωc =

√
GM

r3
εc = −GM

2r
S =

3

2
Ωc Ωr = Ωz =

√
GM

r3
= Ωc

And thus do not precess.

2 Accretion Disks

2.1 Fundamentals

Consider two particles (mi, hi, εi, i = 1, 2) on circular orbits which exchange some mass dm,
angular momentum dh and orbital energy dε; mass and angular momentum must be conserved,
though orbital energy will overall be dissipated into heat1. Before calculating the total energy
change, we derive a cool lemma about εc and hc:

dεc
dhc

=
dεc
dr

dr

dhc
=

[
hc
r2

dhc
dr

0︷ ︸︸ ︷
−h

2
c

r3
+ ∂rcΦ

]
dr

dhc
=
hc
r2

= Ωc

⇒ dE = d(miεci) = dmi εci +midεci = dmi εci +miΩcidhci = dmi εci + ΩcidHci − dmi Ωcihci

= [(εc − Ωchc)1 − (εc − Ωchc)2] dm1 + [Ωc1 − Ωc2] dH1

Now d
dr
(ε− Ωchc) = −hc dΩc/dr , so in the usual case that Ωc(r) monotonically decreases this

Jacobic quantity monotonically increases. Suppose wlog rc1 < rc2, so that the first squacket
above is negative and the second is positive. dE < 0 thus encourages dm1 > 0 and dH1 < 0:
mass is transferred inwards and AM is transferred outwards.

2.1.1 Mass Conservation

0 =
∂ρ

∂t
+∇ · (ρu) = ∂ρ

∂t
+

1

r

∂

∂r
(rρur) +

1

r

∂

∂ϕ
(ρuϕ) +

∂

∂z
(ρuz)

Multiplying by r and integrating over all z and ϕ, we find

0 =
∂

∂t

(∫ ∞

−∞

∫ 2π

0

rdϕ dz ρ

)
︸ ︷︷ ︸

M

+
∂

∂r

(∫ ∞

−∞

∫ 2π

0

rdϕ dz ρur

)
︸ ︷︷ ︸

F

+2πr [ρuz]
∞
−∞︸ ︷︷ ︸

0

⇒ ∂M
∂t

+
∂F
∂r

= 0

M(r, t) is the mass in a disk per unit radius. F(r, t) is the radial momentum per unit radius;
accretion corresponds to F < 0. With azimuthal symmetry, these are normally written:

M = 2πr

Σ(r,t)︷ ︸︸ ︷∫ ∞

−∞
ρ dz = 2πrΣ F = 2πr

Σ(r,t)ūr(r,t)︷ ︸︸ ︷∫ ∞

−∞
ρur dz = 2πrΣūr = −Ṁ

1Otherwise we could extract thermal energy from the particles down to speed them up, in violation of 2LT.
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2.1.2 Angular Momentum Conservation

ρ

(
∂u

∂t
+ u · ∇u

)
= −ρ∇Φ +∇ · T ⇒ ∂

∂t
(ρu) +∇ · (ρuu− T) = −ρ∇Φ

where we have used mass conservation; T is the stress tensor – a symmetric 2nd-order tensor,
of which the rϕ component will be the most important. T encapsulates various momentum
transport processes, including self-gravity, B fields, viscous stresses, and turbulence. The
external gravitational field (due to the central object) remains as a source term. The azimuthal
component of this equation multiplied by r2 can be written2:

∂

∂t

(
ρr2uϕ

)
+

∂

∂r

[
r2(ρuruϕ − Trϕ)

]
+ r2

∂

∂z
[(ρuϕuz − Tzϕ)] + r

∂

∂ϕ

(
ρu2ϕ − Tϕϕ

)
= 0

assuming ∂Φ/∂ϕ = 0. Integrating over z and ϕ as above, using the definitions of M, F , and
assuming ruϕ(r, ϕ, z) = h(r) independent of z (and ϕ), we eventually find

∂M
∂t

h+
∂

∂r
(Fh+ G) = 0 G(r, t) ≡

∫ ∞

−∞

∫ 2π

0

−r2Trϕ dϕ dz ≡ −2πν̄Σr3
dΩ

dr

where the mean effective kinematic viscosity ν̄(r, t) is defined by ν̄Σr dΩ
dr

=
∫∞
−∞ Trϕ dz. The

flux of angular momentum Mh is thus due to the advection of orbital momentum Fh as well
as a torque. Eliminating M from the equation for mass conservation gives

F dh

dr
+
∂G
∂r

= 0 ⇒ ∂M
∂t

=
∂

∂r

[(
dh

dr

)−1
∂G
∂r

]

Substituting the forms of M and G in terms of more ordinary variables, we find

∂

∂t
(2πrΣ) =

∂

∂r

[(
dh

dr

)−1
∂

∂r

(
−2πν̄Σr3

dΩ

dr

)]

⇒ ∂Σ

∂t
= −1

r

∂

∂r

[(
dh

dr

)−1
∂

∂r

(
r3ν̄Σ

dΩ

dr

)]
Keplerian−−−−−→ ∂Σ

∂t
= −3

r

∂

∂r

[
r1/2

∂

∂r

(
r1/2ν̄Σ

)]
a quasi-diffusion equation. We stated earlier that ν̄ = ν̄(r, t); in fact usually ν̄ = ν̄(r,Σ). We
see that if ν̄ = ν̄(r) then the diffusion equation is linear in Σ.

2.1.3 Energy Conservation

Consider the quantity ∂
∂t
(Mε) + ∂

∂r
(Fε): this is a sort of Lagrangian rate of change of energy

per unit radius. Using the above, and the fact that dε = Ω(r) dh(r) ⇒ ε = ε(r) we find

∂

∂t
(Mε) +

∂

∂r
(Fε) = ε

(
∂M
∂t

+
∂F
∂r

)
+ F dε

dr
= −∂G

∂r

(
dh

dr

)−1
dε

dr
= −∂G

∂r
Ω

⇒ ∂

∂t
(Mε) +

∂

∂r
(Fε+ GΩ) = GdΩ

dr

2Using the formula [∇·T]ϕ = 1
r2

∂
∂r

(
r2Tϕr

)
+ 1

r
∂Tϕϕ

∂ϕ +
∂Tϕz

∂z for a symmetric tensor. This formula has surprise
powers of two in the first term and needs some kinda tensor calculus to derive.
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so GΩ contributes to the energy flux, and the viscous torque acts to dissipate energy where the
fluid shears. In the normal notation, the rate of dissipation per unit area is given by

∂

∂t
(Σε) +

1

r

∂

∂r

(
rΣūrε− r3ν̄ΣΩ

dΩ

dr

)
= −ν̄Σ

(
r
dΩ

dr

)2

where we note that the RHS is the viscosity times the shear rate S squared. The energy per
unit area that is dissipated on the RHS will be dissipated at the two surfaces of the disk,

defining an effective temperature: 2σT 4
eff = ν̄Σ

(
r dΩ
dr

)2
.

2.1.4 Boundary Conditions

A free boundary has G = 0 there. For a black hole, orbits are unstable within r = 3rs (the
ISCO); G ≈ 0 here. Non-magnetic stars rotate at an angular frequency Ω∗ ≪ ΩK(R∗), so the
Ω of the disk will have to be dragged down to the star’s Ω∗ in a boundary layer. By Rolle’s
theorem there will have to be a point where dΩ/dr = 0 ⇒ G = 0 somewhere near R⋆.

Stars with significant B fields disrupt the disk somewhere within the magnetospheric radius,
at which the accretion flow is diverted out of the plane and the accretion becomes polar. The
linkage of the B field through the disc may create a magnetic torque here.

2.2 Steady Accretion

If ∂/∂t = 0, then we have F(r) = −Ṁ const. and F(r)h(r) + G(r) = const. Hence if there
is no torque at the inner boundary, G(r) = Ṁ [h(r)− h(rin)]. Now for the Keplerian case,

G(r) = −2πν̄Σr3
(
−3

2

√
GM/r5

)
= 3πν̄Σ

√
GMr = 3πν̄Σh(r), so we have

ν̄Σ =
Ṁ

3π

(
1− h(rin)

h(r)

)
=
Ṁ

3π

(
1−

√
rin
r

)
With the definition of the effective temperature, we find

σT 4
eff =

3GMṀ

8πr3

(
1−

√
rin
r

)
⇒ L ≡

∫ ∞

rin

2πr · 2σT 4
eff dr =

GMṀ

2rin

The other half of the potential energy released by accretion is dissipated in the boundary layer.

2.3 Time-Dependent Accretion

2.3.1 Linear Diffusion Equation

Consider the linear case, where ν̄ = ν̄(r), and with no central torque G(rin) = 0. This can be
solved with a Green’s function. Let ∆(r, r0, t) be the solution M = 2πrΣ(r, t) of the diffusion
equation with initial condition M(r, 0) = δ(r − r0). Then we have by definition

M(r, t) =

∫ ∞

0

∆(r, r0, t)M(r0, 0) dr0

where M(r0, 0) comes from the initial condition M(r, 0).
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In the case ν̄ = Ar, the diffusion equation has a (relatively!) simple solution: letting

g = r1/2ν̄Σ = Ar3/2Σ =
Ar1/2

2π
M, y =

√
4

3A
r1/2 ⇒ ∂g

∂t
=
∂2g

∂y2

The solution to this with g(y, 0) = δ(y) is 1√
4πt

exp(−y2/4t), so we might guess a solution

g(y, t) = 1√
4πt

exp(−(y − y0)
2/4t), where y0 = y(r0). But this cannot be the full solution as

g ∝ G, and this does not give g(rin) = 0. Using the method of images, however, we can put
another source at y = 2yin − y0, giving:

g(y, y0, t) =
1√
4πt

[
exp

(
−(y − y0)

2

4t

)
− exp

(
−(y + y0 − 2yin)

2

4t

)]
This is the solution for g(y, 0) = δ(y − y0), but the actual boundary condition at t = 0 has an
extra proportionality factor:

g(y, 0) =
Ar1/2

2π
M(r, 0) =

Ar1/2

2π
δ(r − r0) =

Ar
1/2
0

2π

δ(y − y0)√
3Ar0

=
1

2π

√
A

3
δ(y − y0)

where we have used δ(f(x)) = δ(x − x0)/|f ′(x0)| to convert the δs. With this extra propor-
tionality factor we then have

g(y, y0, t) =
1

2π

√
A

12πt

[
exp

(
−(y − y0)

2

4t

)
− exp

(
−(y + y0 − 2yin)

2

4t

)]
Thus ∆(r, r0, t), the solution to all this when M(r, 0) = δ(r − r0), is given by

∆(r, r0, t) =
2π

Ar1/2
1

2π

√
A

12πt

[
exp

(
−(y − y0)

2

4t

)
− exp

(
−(y + y0 − 2yin)

2

4t

)]
=

1√
12πArt

[
exp

(
−
(
√
r −√

r0)
2

3At

)
− exp

(
−
(
√
r +

√
r0 − 2

√
rin)

2

3At

)]
The full solution for M(r, t) is then the convolution of this ∆ with M(r, 0). Interestingly, in
the limit of 3At≫ r, we find

∆(r, r0, t) ≈
1√

12πArt

4
√
rr0 + 4rin − 4

√
rrin − 4

√
r0rin

3At
≡ 2πrΣ =

2π

A
ν̄Σ

⇒ ν̄Σ =
1

3π

√
rr0 + rin −

√
rrin −

√
r0rin√

3πArt3
=

√
r0 −

√
rin√

3πAt3
1

3π

(
1−

√
rin
r

)
similarly to the steady case, with the prefactor being the now time-dependent accretion rate
Ṁ ∝ t−3/2.

The mass remaining in the disk at time t is given by∫ ∞

rin

∆(r, r0, t) dt =
1√

12πAt

[∫ ∞

−ξin

√
12Ate−ξ2dξ −

∫ ∞

ξin

√
12Ate−ξ2dξ

]
=

1√
π

∫ ξin

−ξin

e−ξ2dξ

which is just erf(ξin); we have substituted ξ2 to be the exponent of each integral and defined
ξin =

(√
r0 −

√
rin
)
/
√
3At. In the small-argument limit erf(x) → x, so for large times the mass

remaining in the disk decays as t−1. It can be apparently shown that
∫ t

0
Ṁ(rin, t) dt = erfc(ξin),

verifying that mass has been conserved. Further, the angular momentum remaining in the disk,∫∞
rin

√
GMr∆dr = h0 − hinerfc(ξin): the initial angular momentum minus that of the matter

when it falls to rin.
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2.3.2 Non-Linear Diffusion Equation

Generally, ν̄ = AraΣb. If we let rin → 0, the problem becomes scale-free. If there is no central
torque the angular momentum is conserved:

√
GM

∫ ∞

0

r1/22πrΣdr ≡
√
GMC for some C : [C] =ML1/2

We now use dimensional analysis to construct a characteristic length scale R(t) using the
constants A, C, and time t.

[ν̄] = L2T−1 ⇒ [A] = L2T−1 · L−a ·M−bL2b =M−bL2−a+2bT−1

Thus the quantity [ACbt] = L2−a+5b/2. The size of the disk thus scales as t2/(4−2a+5b). The mass
of the disk scales as C/L1/2 ∝ t−1/(4−2a+5b). There are general but very complicated solutions,
which tend to the above scalings for large times (when the initial conditions have faded into
the past and the problem loses its scale).

2.4 The z-Direction

2.4.1 Hydrostatic Equilbrium

In the z-direction, the force balance in the steady state is ρ ∂Φ/∂z = − ∂p/∂z Now the
potential will be Φ(r, z) ≈ Φ(r, 0) + 1

2
∂2zzΦ(r, 0)z

2 ⇒ ∂zΦ = ∂2zzΦ(r, 0)z = Ω2
zz, so

∂p

∂z
= −ρΩ2

zz

This can be solved if p(ρ) is known. For an isothermal gas, p = c2sρ, so p ∝ ρ ∝ exp(−z2/2H2),
where H = cs/Ωz. To consider more general cases, we define:

Σ ≡
∫ ∞

−∞
ρ dz P ≡

∫ ∞

−∞
p dz ΣH2 =

∫ ∞

−∞
ρz2 dz

defining the vertically integrated pressure P and the scaleheight H as the standard deviation
of ρ(z). These quantities have some dimensional redundancy:

P = [zp]∞−∞︸ ︷︷ ︸
0

−
∫ ∞

−∞
z
∂p

∂z
= Ω2

z

∫
ρz2 dz = ΣΩ2

zH
2

This can be dedimensionalised by writing

z̃ = z/H ρ(z) = ρ̂ρ̃(z̃), ρ̂ =
Σ

H
, p(z) = p̂p̃(z̃), p̂ =

P

H

⇒ dp̃

dz̃
= −ρ̃z̃,

∫
ρ̃ dz̃ =

∫
p̃ dz̃ =

∫
ρ̃z̃2 dz̃ = 1

The isothermal model (ρ ∝ p) corresponds to a normalised Gaussian ρ̃ = p̃ = 1√
2π

exp(−z̃2/2).
A constant density model, with ρ = const. up to a certain |z|, has the solution ρ̃ = 1/2

√
3,

p̃ = (3− z̃2)/4
√
3 for |z̃| < z̃0 =

√
3, and ρ̃ = p̃ = 0 outside.
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2.4.2 Radiative Transfer

Radiation diffuses upwards in the disk due to temperature gradients:

Fz = −16σT 3

3κρ

∂T

∂z

Neglecting small (O(H/r)2) contributions from e.g. ∂Fr/∂r , energy conservation gives

∂Fz

∂z
= ρν̄

(
r
dΩ

dr

)2

Together with hydrostatic equilibrium, this gives three equations in ρ, p, Fz, T , and κ. This
set is closed by assuming an equation of state p = p(ρ, T ) (e.g. p = kρT

µmp
+ 4σ

3c
T 4) and a function

for κ = κ(ρ, T ) (e.g. Kramers’ κ = CρT−7/2). Further work on this is non-examinable in 22/23.

2.5 Scalings

A thin disk has aspect ratio H/r ≪ 1. Hydrostatic equilibrium: p/H ∼ ρΩ2H ⇒ cs ∼ HΩ.
The dimensions of [ν̄] = L2T−1, so [ρν̄] = ML−1T−1. The dimensions of [p] = ML−1T−2,

so [ρν̄] = [p/Ω]. The alpha viscosity prescription prescribes a constant proportionality:

ν̄ = α
p

ρΩ
∼ α

c2s
Ω

∼ αcsH

True molecular viscosity ν̄ ∼ vνℓν is negligible for disks, but the effective viscosity due to
turbulence can be thought of as being due to molecular motions over the length of a typical
eddy. Now we require vν < cs for subsonic turbulence, and we require ℓν < H for the eddy to
fit into the disk, so we expect ν̄ ≲ csH and hence α ≲ 1 for turbulent viscosity alone (other
effective viscosities, due to self-gravity of B fields, could have α > 1).

The orbital Mach number ∼ rΩ/cs ∼ (H/r)−1 ≫ 1: highly supersonic. Typical accretion
velocities |ūr| ∼ ν̄/r ∼ αcs(H/r) ≪ cs: highly subsonic. Thus |ūr| ≪ cs ≪ rΩ.

We assumed earlier that uϕ = rΩ(r); this is justified by showing that the relative contribu-
tions of the pressure gradient to the centripetal force is

∂p/∂r

ρrΩ2
∼ c2s
r2Ω2

∼
(
H

r

)2

≪ 1 ⇒ uϕ = rΩ

[
1 +O

(
H

r

)2
]

There are three important timescales in astrophysical disks:

• Dynamical timescale: td ∼ Ω−1 ∼ H/cs. This is the timescale of orbital motion, and
the timescale over which vertical hydrostatic equilibrium is established.

• Thermal timescale: tT ∼ (internal energy / area)/(dissipation rate / area). We can
write this as ∼ P/ν̄ΣΩ2 ∼ c2s/ν̄Ω

2 ∼ cs/αHΩ2 ∼ 1/αΩ ∼ α−1td > td. This is the
timescale over which vertical thermal balance is established.

• Viscous timescale: tν ∼ r2/ν̄ ∼ α−1(H/r)−2td ≫ tT . This is the timescale over which
matter moves radially in the disk, and hence Σ evolves.

Thin disks with α < 1 thus have td < tT ≪ tν ; all three timescales also increase with r.
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2.6 Instabilities

2.6.1 Viscous Instability

Suppose we find a solution to the general time-dependent diffusion equation Σ0(r, t). Is it a
stable solution? Linearising the equation (substituting Σ = Σ0 + Σ′ where Σ′ ≪ Σ0) gives:

∂Σ′

∂t
=

3

r

∂

∂r

[
r1/2

∂

∂r

(
βr1/2ν̄Σ′)], β ≡ 1

ν̄

∂(ν̄Σ)

∂Σ

∣∣∣∣
Σ0

=
∂ ln (ν̄Σ)

∂ lnΣ

∣∣∣∣
Σ0

The factor β thus alters the effective diffusivity of the surface density. If β < 0, the disk
becomes anti-diffusive, with all the mass piling into a δ function. This viscous instability will
cause the disk to break apart into rings. Viscous instability is typically much less important
than thermal instability.

2.6.2 Thermal Instability

Suppose α ≪ 1, so that td ≪ tT ≪ tν . We will now work on thermal timescales, thus assuming
the disk to be in vertical hydrostatic equilibrium and with Σ constant in time.

The heating and cooling rates H and C are likely to be functions of ν̄ and Σ, or equivalently
ν̄Σ and Σ; in fact H = H(ν̄Σ) alone. The curve on which H(ν̄Σ) = C(ν̄Σ,Σ) defines a curve
in the ν̄Σ-Σ plane, a small step along which has dH = dC:

dH
d(ν̄Σ)

d(ν̄Σ) =
∂C

∂(ν̄Σ)
d(ν̄Σ) +

∂C
∂Σ

dΣ ⇒ ∂

∂(ν̄Σ)
(H− C) = ∂Σ

∂(ν̄Σ)

∂C
∂Σ

=
1

βν̄

∂C
∂Σ

Suppose some heat is added to the system, on thermal timescales tT . Σ is unable to readjust
on these timescales, so there must be a change in ν̄Σ – this change is in practice an increase, so
ν̄Σ increases. If H−C increases as a result of ν̄Σ increasing (i.e. if ∂(H− C)/∂(ν̄Σ) > 0), then
the system will heat up more and become unstable. The thermal instability therefore occurs if

1

βν̄

∂C
∂Σ

> 0 ⇒ β < 0

where we have assumed3 ∂C/∂Σ
∣∣
ν̄Σ
> 0. This is the same condition as for viscous instability,

but VI occurs on viscous timescales, so if β < 0 then the thermal instability dominates.
Some non-examinable work gives ν̄ ∝ rΣ2/3 in a disk with Thomson opacity, so that β = 5/3

and the disk is thermally and viscously stable. Cooler disks may instead have S-shaped ν̄Σ–Σ
cooling balance curves, with an intermediate instability region. Apparently this leads to limit
cyclic behaviour. Suppose we start on the lower (“cool”) branch of the S and Σ is slowly rising.
When we reach the corner, β becomes negative and the system becomes thermally unstable,
heating up a lot and quickly increasing ν̄Σ, jumping up to the top branch (on which β > 0
again) over a thermal timescale. Apparently Σ then decreases until the other corner is turned
and β < 0 again, at which point we jump down quickly to the cool branch again. Not fully
sure of the mechanisms here, but this cycle might be causing periodic outbursts as seen in
cataclysmic variable stars and X-ray binaries.

3This assumption comes from Σ ∼ ν̄−1 ∝ (αT )−1, so ∂Σ/∂T
∣∣
ν̄Σ

< 0, and the fact that typically ∂C/∂T > 0
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3 Shearing Sheet

3.1 Local Model

We now zoom in to a small patch of the disk at a radius r0, and change frames to one instanta-
neously orbiting at angular frequency Ω. About this point, we prescribe the radial coordinate
x = r − r0 and azimuthal coordinate y = r0(ϕ− Ωt) as locally Cartesian coordinates. Substi-
tuting these coordinates into the Lagrangian, it will become to second order

L =
1

2

(
ṙ2 + r2ϕ̇2 + ż2

)
− Φ(r, z)

=
1

2
r20 − Φ(r0, 0) + r0Ωẏ +

1

2

(
ẋ2 + ẏ2 + ż2

)
+ 2Ωxẏ +

1

2

(
Ω2 − ∂2rr0Φ

)
x2 − 1

2
(∂2zz0Φ)z

2

where a derivative with subscript 0 is evaluated at (r0, 0) and we have cancelled r0Ω
2 with ∂r0Φ.

In the Euler-Lagrange equations, the constant terms will be differentiated and not contribute;
the only linear term is r0Ωẏ, but this will only enter in the term d

dt
∂L
∂ẏ
, which is 0. Thus the

only part of this Lagrangian which will contribute to the motion will be

L2 =
1

2

(
ẋ2 + ẏ2

)
+ 2Ωxẏ +

1

2

(
Ω2 − ∂2rr0Φ

)
x2︸ ︷︷ ︸

Lh

+
1

2
ż2 − 1

2
(∂2zz0Φ)z

2︸ ︷︷ ︸
Lz

Where we highlight that this separates into horizontal and vertical Lagrangians Lh and Lz, so
the vertical motion is decoupled from the x, y. The Euler-Lagrange equations then give:

⇒ ẍ = 2Ωẏ +
(
Ω2 − ∂2rr0Φ

)
x; ÿ + 2Ωẋ = 0; z̈ = −(∂2zz0Φ)z

The Φ derivatives are a bit annoying, so we evaluate them here. Radial force balance gives
∂r0Φ = rΩ2 ⇒ ∂2rr0Φ = Ω2 + 2Ωr dΩ

dr
= Ω2 − 2ΩS. We can also write ∂2zz0Φ = Ω2

z. Thus

ẍ− 2Ωẏ = 2ΩSx ÿ + 2Ωẋ = 0 z̈ = −Ω2
zz

These equations can also be thought of as emerging from a combination of Coriolis force and
tidal potential Φt(x, z) = −ΩSx2 + 1

2
Ω2

zz
2. Recalling that S ≡ −r dΩ/dr > 0, the tidal

potential thus has a saddle point at the (x, y, z) origin.
Circular midplane orbits correspond to trajectories with constant x and z = 0. The first

equation shows that for such trajectories ẏ = −Sx: adjacent orbits move at different speeds,
and the system shears at a rate −S.

The general solution makes use of the fact that py ≡ ∂L2

∂ẏ
= ẏ + 2Ωx is a constant in time,

as is clear from the second equation. Substituting py into the x-Euler-Lagrange equation gives

ẍ− 2Ω(py − 2Ωx) = 2ΩSx ⇒ ẍ+ 2Ω(2Ω− S)︸ ︷︷ ︸
Ω2

r, see §1

x = 2Ωpy

⇒ x(t) =
2Ωpy
Ω2

r

+R
[
Ae−iΩrt

]
⇒ y(t) = y0 − S

2Ωpy
Ω2

r

t+R

[
2ΩA

iΩr

e−iΩrt

]
where we note that y only enters the equations of motion as its derivatives so it always has an
unspecified integration constant, reflecting the azimuthal symmetry of the disk. Note also that
the coefficients of the exponentials are π/2 out of phase. These solutions therefore correspond
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to oscillations about orbital motion with frequency Ωr. There may also be vertical oscillations,
clearly at frequency Ωz.

Other than py, two other conserved quantities are the horizontal and vertical Hamiltonians:

εh ≡
∑
i

q̇i
∂Lh

∂q̇i
− Lh εz ≡

∑
i

q̇i
∂Lz

∂q̇i
− Lz

=
1

2

(
ẋ2 + ẏ2

)
− ΩSx2 =

1

2
ż2 +

1

2
Ω2

zz
2

py and εh + εz can be related to the global constants h and ε− Ωh respectively by expanding
to second order in (x, y, z).

Aside from azimuthal symmetry, the disk also has vertical symmetry (z 7→ −z), transla-
tional symmetry in x if accompanied by Galilean boost in y (x 7→ x+c; y 7→ y−cSt), rotational
symmetry about the z-axis (x 7→ −x; y 7→ −y: the local model doesn’t know where the centre
is) and scale invariance (x 7→ cx; we are looking over scales much smaller than r0 to linearise,
so c cancels out by design).

3.2 Satellites

With a second massive body on a circular orbit (x = y = 0), the motion of test particles is
dominated by the gravity of two bodies. The equations of motion in the plane become

ẍ− 2Ωẏ = 2ΩSx− ∂Ψ

∂x
ÿ + 2Ωẋ = −∂Ψ

∂y

where Ψ = −GMs/
√
x2 + y2 is the satellite potential.

3.2.1 Epicyclic Excitation

Recall the general solution in the absence of Ψ, which we showed in the previous section to be

x(t) = x0 +R
[
Ae−iΩrt

]
, y(t) = y0 − Sx0t+R

[
2Ω

iΩr

Ae−iΩrt

]
; x0 =

2Ωpy
Ω2

r

Note then also that

ẋ = R
[
−iΩrAe

−iΩrt
]
= ΩrI

[
Ae−iΩrt

]
, ẏ = −Sx0 − 2ΩR

[
Ae−iΩrt

]
The epicyclic amplitude A is then given by

Ae−iΩrt = R
[
Ae−iΩrt

]
+ iI

[
Ae−iΩrt

]
= − ẏ + Sx

2Ω− S
+

i

Ωr

ẋ ⇒ A =

[
− ẏ + Sx

2Ω− S
+

i

Ωr

ẋ

]
eiΩrt

⇒ Ȧ =

[
− ÿ + Sẋ

2Ω− S
+

i

Ωr

ẍ+ iΩr

(
− ẏ + Sx

2Ω− S
+

i

Ωr

ẋ

)]
eiΩrt

=

[
− ÿ + 2Ωẋ

2Ω− S
+ i

ẍ− 2Ωẏ − 2ΩSx

Ωr

]
eiΩrt =

[
1

2Ω− S

∂Ψ

∂y
− i

Ωr

∂Ψ

∂x

]
eiΩrt

where we have substituted in from the equations of motion. Consider a test particle initially
travelling on an unperturbed circular orbit at impact parameter x0, such that without Ψ the
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particle would just move at constant x0 and y = −Sx0t (corresponding to A = 0). The satellite
will however induce a small epicyclic perturbation, of amplitude ∆A, which we now deduce.
Substituting in Ψ, we find

Ȧ =
GMs

(x2 + y2)3/2

[
y

2Ω− S
− ix

Ωr

]
eiΩrt ≈ −iGMs

Ωrx20

(
1 + S2t2

)−3/2
(
1− i

2Ω

Ωr

St

)
eiΩrt

where we have assumed that x and y will not deviate too much from their unperturbed values
and simplified using the definition of Ωr. The total ∆A will be the integral of Ȧ from t = −∞
to ∞, and from inspection the real part of Ȧ will integrate out, leaving

∆A = −iGMs

Ωrx20

∫ ∞

−∞

(
1 + S2t2

)−3/2
(
cos (Ωrt) +

2ΩS

Ωr

t sin (Ωrt)

)
dt

= −i GMs

Ωrx20S

[
f(Ωr/S)−

2Ω

Ωr

f ′(Ωr/S)

]
︸ ︷︷ ︸

C=3.36 for Keplerian

; f(k) ≡
∫ ∞

−∞
(1 + x2)−3/2 cos (kx) dx

The energy is related to |A|2. In the unperturbed case, recall that A =
[
− ẏ+Sx

2Ω−S
+ i

Ωr
ẋ
]
eiΩrt.

A lot of algebra gives:

|A|2 = 1

(2Ω− S)2
(
ẏ2 + 2Sxẏ + S2x2

)
+

1

Ω2
r

ẋ2 =
1

Ω2
r

[(
ẋ2 + ẏ2 − 2ΩSx2

)
+

2ΩS

Ω2
r

(ẏ + 2Ωx)2
]

=
1

Ω2
r

[
2εh +

2ΩS

Ω2
r

p2y

]
⇒ εh =

1

2
Ω2

r|A|2 −
ΩS

Ω2
r

p2y

The quantity εh is preserved for unperturbed orbits as A is constant.
For perturbed orbits, the conserved quantity is instead εh + Ψ. As t → ±∞, Ψ → 0, so

to preserve εh +Ψ the perturbation also cannot change εh. The value of py must thus change
according to

∆
(
p2y
)
=

Ωr
4

2ΩS
∆
(
|A|2

)
= 2py∆py

to keep εh = 0. Now a particle on an unperturbed circular orbit has A = 0 and

py = ẏ + 2Ωx = (2Ω− S)x0 =
Ω2

r

2Ω
x0

⇒ ∆py =
1

2

2Ω

Ω2
rx0

Ωr
4

2ΩS
∆
(
|A|2

)
=

Ω2
r

2Sx0

(
CGMs

Ωrx20S

)2

= C2 (GMs)
2

2S3x50

This could be derived similarly using the impulse approximation. The change in x-velocity is
of order (−GMs/x

2
0) × (1/S): the acceleration × the time (roughly). Conservation of energy

requires ∆(v2x) + ∆
(
v2y
)
= 0 across the whole encounter, so using the fact that initially vy =

−Sx0, we have

0 =

(
GMs

x20S

)2

− 2Sx0∆vy ⇒ ∆vy = −(GMs)
2

2S3x50

all that is missing is the dimensionless C2 ≈ 11.3.
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3.2.2 Interactions with the Disk

At a radius x, the azimuthal force per unit x is proportional to

velocity change

particle
× number of particles× particle mass

∆x
× encounter rate

∼ (CGMs)
2

2S3x5
× Σ

∆x
× |Sx∆x| ∝ +x−4sgn(x)

And hence particles on the outside gain y-momentum, encouraging them to move further
out. Conversely, particles on the inside lose momentum, encouraging them to spiral in. The
satellite’s angular momentum change by an equal and opposite amount; the inner and outer
disk torques are usually such that the satellite net loses angular momentum, and migrates
inwards.

Dust moves through the gas present in the disk, experiencing a drag force. This modifies
the equations of motion to

ẍ− 2Ωẏ = 2ΩSx+ γ(ux − ẋ), ÿ + 2Ωẋ = γ(uy − ẏ), z̈ = −Ω2
zz + γ(uz − ż)

where u is the gas velocity and γ is a drag coefficient. The vertical oscillations are clearly
damped, as are the planar oscillations in the case that u = −Sxêy.

If we allow deviations for the gas velocity u = [−Sx + vy(x)]êy, and the dust velocity
ẋ = −Sxêy +w, the equations of motion become

ẇx = 2Ωwy − γwx ẇy + (2Ω− S)wx = γ(vy − wy) ẇz = −Ω2
zz − γwz

A steady-state solution to this is wz = z = 0 in the z-direction, and wy = γ
2Ω
wx and wx =

γ
2Ω−S

(vy − wy) in the plane. This solves to give

wx =
2Ωγ

Ω2
r + γ2

vy wy =
γ2

Ω2
r + γ2

vy

If the Stokes number ∼ Ωr/γ is much less than 1, then wx ≈ 0 and wy ≈ vy. Maximum wx

(radial motion, note that likely vy < 0 due to gas pressure) is achieved for Ωr ≈ γ, under
which circumstances the dust should fall into the centre in a matter of centuries, unless some
non-monotonicities in the pressure P (x) are able to affect vy.

3.3 Hydrodynamics

We now explore how fluids behave in local coordinates. The equation of motion in the rotating
frame is

∂u

∂t
+ u · ∇u+ 2Ω× u = −∇Φt −

1

ρ
∇p+ ν̄∇2u

where we have assumed uniform ν̄. For an incompressible fluid (∇ρ = 0 ⇒ ∇ · u = 0),
the basic shear flow is a velocity field u0 = −Sxêy. In this state, ∇Φt balances 2Ω × u in
the plane and 1

ρ
∇p(z) in the z-direction. Consider general perturbations to this shear flow:

u = u0 + v(x, t) and p = p0 + ρψ(x, t). Substituting these into the equation of motion gives(
∂

∂t
− Sx

∂

∂y
+ v · ∇+ 2Ω×

)
v − vxSêy = −∇ψ + ν̄∇2v ∇ · v = 0
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⇒
(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vx − 2Ωvy = −∂ψ

∂x
+ ν̄∇2vx(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vy + (2Ω− S)vx = −∂ψ

∂y
+ ν̄∇2vy(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vz = −∂ψ

∂z
+ ν̄∇2vz

Notice that the Lagrangian derivatives on the LHSs show advection due to both u0 and v.

3.3.1 Shearing Waves & Hydrodynamic Instability

Consider plane wave solutions to these equations with a generally time-dependent real wavevec-
tor k(t). Substituting v(x, t) = R

[
ṽ(t)eik(t)·x

]
, into the advection term (in vector form),(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
v = R

[(
˙̃v + i

(
k̇ · x

)
ṽ − iSxkyṽ

)
eik·x

]
+R

[
ṽeik·x

]
·R
[
ikṽeik·x

]
= R

[(
˙̃v + i

(
k̇ · x− Skyx

)
ṽ
)
eik·x

]
+R

[
k · ṽ︸︷︷︸

0∵∇·v=0

eik·x
]
R
[
iṽeik·x

]
where to go to the second line we have used k ∈ R3 to move it through the R brackets and kill
the 2nd term, though this v · ∇v term will not generally disappear for incompressible fluids
or superpositions of multiple plane waves. We now look for simple solutions in which k is such
that the innermost bracket in the first term goes to 0 (for all x). This requires

k̇x = Sky, k̇y = k̇z = 0 ⇒ kx(t) = kx0 + Skyt, ky, kz = consts.

so kx is the only time-dependent part of k(t). What this looks like in practice is a tilting of the
wavefronts – a wave with kx = 0 initially will have its (horizontal) wavefronts sheared, causing
azimuthal oscillations to gradually converge to radial oscillations.

Anyway the advective term now becomes just R
[
˙̃veik·x

]
. The equations of motion are then:

˙̃vx − 2Ωṽy = −ikxψ̃ − ν̄k2ṽx
˙̃vy + (2Ω− S)ṽx = −ikyψ̃ − ν̄k2ṽy kxṽx + kyṽy + kzṽz = 0

˙̃vz = −ikzψ̃ − ν̄k2ṽz

The ν̄ terms can be taken over to the LHS and simplified with an integrating factor:

dṽi
dt

+ ν̄k2ṽi =
d

dt

[
ṽi exp

(∫
ν̄k2 dt

)]
exp

(
−
∫
ν̄k2 dt

)
where k(t) ∼ Skyt for large t. Writing ṽ ≡ v̂ exp

(
−
∫
ν̄k2 dt

)
, and similarly for ψ, we now have

˙̂vx − 2Ωv̂y = −ikxψ̂ ˙̂vy + (2Ω− S)v̂x = −ikyψ̂ ˙̂vz = −ikzψ̂

Together with the time derivative of k · x = 0, these equations give after a page of algebra
d2

dt2
(k2vx) + Ω2

rk
2
zvx = 0. For ky = 0 (axisymmetric disturbances), v̂ will have exponential

instability for Ω2
r < 0 (which may supercede the viscous damping exponential decay), or stable

oscillations if Ω2
r > 0. Apparently for non-axisymmetric disturbances the growths/decays are

algebraic. Keplerian disks, with Ω2
r > 0, are expected to be stable to this hydrodynamic

instability.
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3.3.2 Vortices

Consider the incompressible shearing sheet in 2 dimensions:

⇒
(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vx − 2Ωvy = −∂ψ

∂x
+ ν̄∇2vx(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vy + (2Ω− S)vx = −∂ψ

∂y
+ ν̄∇2vy

together with ∂vx/∂x + ∂vy/∂y = 0. We define the streamfunction χ(x, y, t) by vx = ∂χ/∂y
and vy = − ∂χ/∂x , automatically satisfying incompressibility. The perturbation to the vortic-
ity ∇× u is then

∇× v =

(
∂vy
∂x

− ∂vx
∂y

)
êz = −∇2χêz ≡ ζêz

Taking the curl of the 2D equation of motion ( ∂
∂x
[y-component] − ∂

∂y
[x-component]) above

removes the ∇ψ terms and many others4, leaving a diffusion equation in ζ:(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
ζ = ν̄∇2ζ

Together with Poisson’s equation ∇2χ = −ζ and the definition of χ, we can solve for v and ζ.
Zonal flows are axisymmetric (∂/∂y = 0) and so have vx = ∂χ/∂y = 0 and hence the

above becomes ∂ζ
∂t

= ν̄ ∂2ζ
∂x2 : a diffusion equation with diffusivity ν̄.

Ansatzing ζ(x, t) = R
[
ζ̃(t)eik(t)·x

]
into the above, assuming as above that k̇ · x = Skyx

to get that one term to cancel, and using the fact that if ζ ∝ eik·x then so will v and hence

k · v = 0 as before, we eventually find simply that ˙̃ζ = −ν̄k2ζ̃. Hence

ζ̃(t) ∝ exp

(
−
∫
ν̄k2 dt

)
Now χ̃ = ζ̃/k2, and |ṽ| ∝ kχ̃, so |ṽ|2 ∝ exp

(
−
∫
ν̄k2 dt

)
/k2. Recalling that k2(t) is a quadratic,

|ṽ|2 may increase for some time (depending on the (initial) wavevector) before being damped
away by the viscous exponential.

If a question comes up in the exam about rotating vortex patches, I’m not answering it.

3.4 Density Waves

We now relax the assumptions of incompressibility and no self-gravity, but neglect viscosity.
Still working in 2D, mass conservation becomes:

∂Σ

∂t
+∇ · (Σu) = 0

and the equation of motion becomes

∂u

∂t
+ u · ∇u+ 2Ω× u = −∇ϕt −∇ϕd −

1

Σ
∇P

where P =
∫
ρ dx, ϕt = −ΩSx2 is the midplane tidal potential, and ϕd = Φd(x, y, 0, t) is the

midplane of the 3D disk self-gravity potential, which satisfies ∇2Φd = 4πGΣδ(z).

4There’s a term that I’m not sure how to cancel in vector form; it might be easiest just to evaluate the
derivatives of the components rather than doing some cool vector shit
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3.4.1 Conservation of Vortensity

Using (∇× u)×u = u·∇u− 1
2
∇
(
|u|2
)
, and assuming a barotropic equation of state P = P (Σ),

we can rewrite this equation of motion as

∂u

∂t
+ (∇× u+ 2Ω)× u = ∇

(
1

2
|u|2 − ϕt − ϕd −

∫
dP

Σ

)
Curling kills the ∇: ∂

∂t
(∇× u) = −∇× [(∇× u+ 2Ω)× u]

Now in this analysis, u is in the x-y plane, but ∇ × u + 2Ω is in the z-direction, so many of
the terms will vanish when this is expanded. What remains is

∂

∂t
(∇× u) = −(∇× u+ 2Ω)(∇ · u)− (u · ∇)(∇× u+ 2Ω)

⇒
(
∂

∂t
+ u · ∇

)
(∇× u+ 2Ω) = (∇× u+ 2Ω)

∂Σ/∂t + u · ∇Σ

Σ

⇒ 0 =

(
∂

∂t
+ u · ∇

)
(∇× u+ 2Ω)− (∇× u+ 2Ω)

Σ

(
∂

∂t
+ u · ∇

)
Σ

= Σ

[
1

Σ

(
∂

∂t
+ u · ∇

)
(∇× u+ 2Ω)− (∇× u+ 2Ω)

Σ2

(
∂

∂t
+ u · ∇

)
Σ

]

⇒
(
∂

∂t
+ u · ∇

)(
∇× u+ 2Ω

Σ

)
= 0

So the quantity in the brackets, f = (∇× u+ 2Ω)/Σ, known as the vortensity, is conserved.

3.4.2 Density Wave Dispersion Relation

In 2D Fourier space, where 2̃(kx, ky, z, t) =
s

2(x, y, z, t)e−ikxxe−ikyy dx dy and k2 = k2x + k2y,
Poisson’s equation for the disk potential gives(

−k2 + ∂2

∂z2

)
Φ̃d = 4πGΣ̃δ(z) ⇒ Φ̃d = −2πGΣ̃

k
e−k|z| ⇒ ϕ̃d = −2πGΣ̃

k

Consider now a uniform base state of a disk, with Σ, P = consts. and u = −Sxêy. In
terms of perturbations v, Σ′, P ′ and Φ′

d, the linearised forms of conservation of mass, Poisson’s
equation, and the equation of motion become(

∂

∂t
− Sx

∂

∂y

)
Σ′ + Σ∇ · v = 0, ∇2Φ′

d = 4πGΣ′δ(z),

(
∂

∂t
− Sx

∂

∂y

)
v − Svxêy + 2Ω× v = −∇ϕ′

d −
c2s
Σ
∇Σ′

where P ′ = v2sΣ
′, where v2s = dP/dΣ, the adiabatic sound speed of the base state, is a constant.

These can be solved with shearing waves as before: substituting Σ′ = R
[
Σ̃

′
(t)eik(t)·x

]
and

similarly for v and ϕ′
d, and letting k̇ · x = Skyx as before, these equations become

˙̃Σ′ + iΣk · ṽ = 0, ϕ̃
′
d = −2πGΣ̃

′

k
, ˙̃v − Sṽxêy + 2Ω× ṽ = −ik

(
ϕ̃
′
d +

v2s
Σ
Σ̃

′
)
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Specialise now in axisymmetric (radial) waves, where ky = 0 and hence k = |kx| = const.

The only time-dependent quantities in the equations become the amplitudes Σ̃
′
and so on,

so we let these be proportional to e−iωt, so that overall we are essentially looking at wavey
perturbations ∝ ei(kxx−ωt). Substituting and simplifying, we get a dispersion relation for ω:

ω2 = v2sk
2 − 2πGΣk + Ω2

r

Stable oscillations have ω2 > 0: we see that for short wavelengths the waves are approximately
sound waves (ω2 ≈ v2sk

2), and for long wavelengths the waves are approximately inertial,
following the global gravity (ω2 ≈ Ω2

r). These oscillations in Σ′ (density waves) are hence
inertial-acoustic waves.

3.4.3 Gravitational Instability

In the intermediate wavelength regime, self-gravity may destabilise the disk, with the negative
part proportional to Σ. If ∃kx : ω2 < 0, then that kx mode will grow exponentially. From the
quadratic, we find that this gravitational instability (GI) can occur if the Toomre parameter :

Q ≡ Ωrvs
πGΣ

falls below 1. This parameter quantifies the irrelevance of self-gravity: if much below 1 then it
is very important and causes instabilities.

When an instability occurs, the surface density grows exponentially, creating rings. Dif-
ferentiating the dispersion relation, the fastest-growing mode (most negative ω2) occurs for
kmax = πGΣ/v2s = Ωr/Qvs ∼ 1/QH, where H is the scale height. The length scale of gravita-
tional instabilities will therefore be 2π/kmax ∼ 2πQH ∼ 10H.

Note that Q ∝ vs ∝ T 1/2. If Q is initially stably high but then falls below a critical value
which is about 2, it turns out that before an instability can occur, non-axisymmetric spiral
density waves emerge. These waves apparently cause shocks and energy dissipation, raising
the temperature, and raising Q. As such Q can stabilise at this value of about 2: the disk
“thermostatically regulates”.

4 Magnetic Fields

Now neglect both compressibility and viscosity. Under these conditions, the Maxwell equations
and Ohm’s law

∂B

∂t
= −∇× E ∇ ·B = 0 ∇×B = µ0J J = σ(E+ u×B)

together lead to the induction equation:

∂B

∂t
+ u · ∇B = B · ∇u+ η∇2B

where η = 1/µ0σ. Per unit volume, the Lorentz force can be written as the divergence of the
Maxwell stress tensor, which has components Mij = BiBj/µ0 −BkBkδij/2µ0. Hence

∇ ·M =
1

µ0

B · ∇B−∇
(
|B|2

2µ0

)
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is the Lorentz force/volume. The first term is magnetic tension; the second is due to magnetic
pressure pB ≡ |B|2/2µ0. Adding these terms into the equation of motion in the local model,

∂u

∂t
+ u · ∇u+ 2Ω× u = −∇Φt −

1

ρ
∇(p+ pB) +

1

µ0ρ
B · ∇B

We will only consider solutions to this and the induction equation which are horizontally
invariant: ∂/∂x = ∂/∂y = 0, and hence ∂uz/∂z = ∂Bz/∂z = 0 as u and B are divergenceless.
We will write u = −Sxêy +v, so ∂vz/∂z = 0 also. The perturbed components of the equation
and motion and induction equation are then5:

Dvx
Dt

− 2Ωvy =
Bz

µ0ρ

∂Bx

∂z

DBx

Dt
= Bz

∂vx
∂z

+ η
∂2Bx

∂z2

Dvy
Dt

+ (2Ω− S)vx =
Bz

µ0ρ

∂By

∂z

DBy

Dt
= Bz

∂vy
∂z

+ η
∂2By

∂z2
− SBx

∂vz
∂t

= −Ω2
zz −

1

ρ

∂

∂z
(p+ pB)

∂Bz

∂t
= 0

where D/Dt = ∂/∂t + vz ∂/∂z . The final equation shows that Bz is not only a constant in x
and y, and not only z (as ∂Bz/∂z = 0) but t as well: Bz is a complete constant. This reflects
the uniform magnetic flux through the disk.

Consider now a disk with upper and lower surfaces z = z±(t), beyond which p = 0. Inte-
grating the z-component of the equation of motion and using Σ = ρ(z+ − z−), we can find

∂2

∂t2

(
z+ + z−

2

)
= −Ω2

z

(
z+ + z−

2

)
− |B+|2 − |B−|2

2µ0Σ

– that is, the centre of mass oscillates about an equilibrium position which is likely z = 0.

4.1 Vertical Equilibrium

Suppose vz = 0. The equations of motion and induction become:

∂vx
∂t

− 2Ωvy =
Bz

µ0ρ

∂Bx

∂z

∂Bx

∂t
= Bz

∂vx
∂z

+ η
∂2Bx

∂z2

∂vy
∂t

+ (2Ω− S)vx =
Bz

µ0ρ

∂By

∂z

∂By

∂t
= Bz

∂vy
∂z

+ η
∂2By

∂z2
− SBx

which are completely linear equations as Bz is a constant.

4.1.1 Steady-State Solutions

Setting all the time derivatives to 0 and solving for Bx, we find

d2Bx

dz2
+K2Bx = 0, K2 =

2ΩSv2Az

Ω2
rη

2 + v4Az

, vA ≡ 1
√
µ0ρ

B

5A subtlety emerges when evaluating Du
Dt , because u does actually vary in x thanks to the −Sxêy term,

giving a couple of terms with −S coefficients scattered about in the y-equations. ∇u ̸= ∇v, so be careful.
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where we have defined the Alfvén velocity vA. The solutions to the ODE for Bx are of course
sinusoids. A common set of boundary conditions is the symmetric Bx = ±B+

x and By = ±B+
y

at z = ±z+. With this, the solution to the time-independent equations can be found. One
strategy is to get Bx(z), then vy, then to eliminate vx from equations 2 and 3 above to derive
an equation in B′′

y and B′′
x and solve for By, then finally to get vx.

Bx =
B+

x

sin (Kz+)
sin (Kz) ⇒ vy = − v2Az

2ΩBz

KB+
x

sin (Kz+)
cos (Kz)

⇒ By =
(2Ω− S)η

v2Az

B+
x

sin (Kz+)

[
sin (Kz)− sin (Kz+)

z+
z

]
+
B+

y

z+
z

⇒ vx = − ηB+
x

Bz sin (Kz+)

[
K cos (Kz)− sin (Kz+)

z+

]
+

v2Az

(2Ω− S)Bz

B+
y

z+

The poloidal B field (the radial Bx and the constant vertical Bz) bends inwards/outwards
(depending on the sign of the constant B+

x ). The orbital speed uy is no longer Keplerian
(vy = 0), but instead has a z-directed shear. The mean accretion velocity ⟨vx⟩ is simply due
to the final term (⟨[. . . ]⟩ averages out here), and is proportional to v2AzB

+
y /Bz ∝ BzB

+
y , which

is a magnetic torque on the surface of the disk; this can potentially drive inflows or outflows
within the disk.

4.1.2 Magnetorotational Instability

Returning to the time-dependent equations, we now linearise them with small perturbations,
again with the form v = R

[
ṽeλt+ikz

]
, and similarly for B̃, but now with constant amplitudes

2̃. Recalling that Bz is a constant, we find

λṽx − 2Ωṽy =
ikBz

µ0ρ
B̃x

(
λ+ ηk2

)
B̃x = ikBzṽx

λṽy + (2Ω− S)ṽx =
ikBz

µ0ρ
B̃x

(
λ+ ηk2

)
B̃y = ikBzṽy − SB̃x

Eliminating all the amplitudes6, we obtain the magnetorotational dispersion relation:[
λ
(
λ+ ηk2

)
+ ω2

A

]2
+
(
λ+ ηk2

)2
Ω2

r − 2ΩSω2
A = 0, ωA ≡ k · vA =

kBz√
µ0ρ

⇒ λ4+
[
2ηk2

]
λ3+

[
2ω2

A +
(
ηk2
)2

+ Ω2
r

]
λ2+

[
2
(
ω2
A + Ω2

r

)
ηk2
]
λ+
[
ω4
A +

(
ηk2
)2
Ω2

r − 2ΩSω2
A

]
= 0

According to the Routh-Hurwitz stability criterion, all the roots of a quartic x4 + ax3 + bx2 +
cx + d = 0 have a negative real part (and hence in our case would not lead to exponential
instability) provided that all the coefficients are positive, and abc − a2d − c2 > 0. Assuming
that we are at least stable in an orbital sense (so that Ω2

r > 0), all the coefficients are definitely
positive except perhaps d, which is

d = k4
(
v4Az + η2Ω2

r

)
− k2

(
2ΩrSv

2
Az

)
=
(
v4Az + η2Ω2

r

)
k2
(
k2 − 2ΩrSv

2
Az

v4Az + η2Ω2
r

)
6It’s actually not too difficult to do this with a matrix. It’s a 4 × 4 determinant but it’s not a very dense

one. The matrix itself is also kinda pretty.
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The cutoff wavenumber in the brackets is the same as the wavenumber in the steady-state
magnetic disk case, K2. Thus for stability we require k2 > K2; perturbations on longer
wavelengths will provoke magnetorotational instability (MRI). The other condition gives:

abc− a2d+ c2 =
(
2ηk2ωA

)2[(
ηk2
)2

+ 4Ω2
]
> 0

so k2 < K2 is the only way to achieve MRI.
Typically we require the magnetic perturbations to go to 0 at z = ±z+, which restricts

the possible values of k to k = nπ/2z+. The minimum |k| is then π/2z+; if this is less than
K then the disk can be unstable. Equivalently, if the disk is thicker than z+ > π/2K, then
large-enough-wavelength modes can fit in the disk and the instability can occur.

In ideal MHD, σ → ∞ ⇒ η → 0. The dispersion relation becomes:

λ4 +
(
2ω4

A + Ω2
r

)
λ2 +

(
ω4
A − 2ΩSω2

A

)
= 0

Out of all the wavelength modes available (the ks, or the ωAs), how high can the growth
rate be? The maximum growth rate will have ∂λ2/∂ω2

A = 0, which gives

ω2
A = ΩS − λ2 ⇒ λ2 =

(
S

2

)2

where we have plugged the expression for the fastest-growing ωA back into the dispersion
relation. Weirdly, this result is independent of the magnetic field.

4.2 Magnetocentrifugal Acceleration

Consider a disk with a steady B field7. Outside the disk, we have ρ → 0, so the (original!)
equations of motion and induction give ∂Bx/∂z = 0, ∂By/∂z = 0, and ∂vx/∂z = 0, ∂vy/∂z =
SBx/Bz. Thus

Bx = B+
x , By = B+

y , vx = const., vy =
SB+

x

Bz

z + const.

The force/mass in the direction of the magnetic field is then

Dv

Dt
·B = 2Ωvy

Bx

|B|
− (2Ω− S)vx

By

|B|
− Ω2

zz
Bz

|B|
∝

[
2ΩS

(
B+

x

Bz

)2

− Ω2
z

]
z + const.

The force along B due to By is constant, the force due to Bx is ∝ z, and the force due to
Bz is ∝ −z. The B field points out of the disk and particles are being funnelled along it – if
their acceleration increases as they travel up along the field lines, then their motion will be
exponential and a jet/wind will be launched. This occurs if

2ΩS

(
B+

x

Bz

)2

> Ω2
z ⇒

(
B+

x

Bz

)2

>
Ω2

z

2ΩS

Keplerian−−−−−→ 1

3

So if B field hits the disk at an angle greater than tan−1
(
1/
√
3
)
= 30◦ to the vertical, it can

launch an outflow.

7Not too sure of the assumptions made in this section... imo this was treated better in the AFD course.
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