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1 Detection

1.1 Transit

When a planet passes in front of a star, the total flux received from the star decreases by a
factor of order ∆0 ≡ R2/R2

∗. From detailed measurements of the light curve, one can also
deduce i, a/R∗, and P . If the secondary eclipse is observed, one can also calculate e.

The transit method has been the most successful detection method, but it has drawbacks:

• For a transit to be observable, we require i ≈ 90◦, and hence large surveys are needed to
find a good number of planets this way.

• The signal size is very small. RJ/R⊙ = 0.100, so ∆J,⊙ = 0.01. Worse, ∆E,⊙ = 8.4×10−5.

• To confirm the presence of a planet, multiple transits are required. This leads to long-
period orbits being hard to detect with this method.

1.2 Radial Velocity

As a planet orbits a star, its star wobbles due to the gravitational pull of the planet on the
star. The spectral lines in the star then oscillate with the radial velocity of the star. This
oscillation will be sinusoidal for a circular orbit, but eccentricity distorts the RV curve. The
whole system may have a systematic radial velocity, so the curve will generally be offset from
vr = 0. The radial velocity semi-amplitude k of the curve depends on the parameters of the
planet-star system. Assuming M ≫ M∗:

k =
1√

1− e2

(
2πG

PM2
∗

)1/3

M sin i =
0.0895ms−1

√
1− e2

(
M sin i

ME

)(
M∗

M⊙

)−2/3(
P

1yr

)−1/3

Thus the signal size is largest for large planets around small stars on close-in, highly-inclined
orbits. If the inclination is not independently known (such as through the transit method),
then only M sin i can be deduced, giving a lower bound on M .

If the inclination is close enough to 90◦ that transit measurements can also be made, then
it is possible to deduce M and R. Hence the bulk density ρ can be calculated, giving some
clues as to its composition.
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1.3 Direct Imaging

The viability of direct imaging depends on the planet-star flux ratio F/F∗, and separation a.
We first approximate both planet and star as black bodies. A black body has the specific

intensity (see §2.1 later) given by the Planck law:

Bλ =
2hc2

λ5

1

ehc/λkBT − 1

λ≫hc/kBT−−−−−−→ 2ckBT

λ4

where we have taken the large-wavelength limit λ ≫ hc/kBT = 14µm/(T/1000K); it is pro-
gressively easier to DI planets at longer wavelengths, as F λ/F∗λ is a monotonically-increasing
function of λ, as is shown in Figure 1. This is intuitive, as the blackbody spectrum peaks
according to Wien’s law at λmax = 2.9mm K/T : a longer-wavelength peak for the cooler
planet.

F λ

F∗λ
=

Bλ(T )

Bλ(T∗)

R2

R2
∗
=

ehc/λkBT∗ − 1

ehc/λkBT − 1

R2

R2
∗

λ≫hc/kBT−−−−−−→ T

T∗

R2

R2
∗

Figure 1 | Planet-Star Flux Ratio between
Jupiter and the Sun. We have used
T J = 150K and T⊙ = 5800K, and
RJ/R⊙ = 0.1. Note the large range
of the horizontal axis

Figure 1 shows that the flux ratio between
Jupiter and the Sun is only∼ 10−4 even in the
“far-infrared” (λ > 15µm); it is difficult to
make ground-based measurements redwards
of 5µm due to FIR noise from the Earth.

The second issue is the separation. The
angular separation is θ/as = (a/AU)/(d/pc).
The diffraction limit of a telescope is θ/rad =
1.22λ/D; for a 10m telescope in the visible,
θ ∼ 0.01”. However, most DI measurements
are not diffraction-limited, but seeing-limited
by Earth’s atmospheric turbulence.

DI makes use of coronagraphy (to reduce
the flux received from the star) and adaptive
optics (to mitigate seeing) to improve the sig-
nal. Nonetheless, the best instruments have
a flux sensitivity of ∼ 10−5 and an angular
resolution of ∼ 0.2” in the near-IR.

Note that all three detection methods are biased towards detecting large planets, whether
in M or R. RV is biased towards close-in planets whereas DI is biased towards far-out planets.
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2 Atmospheres

2.1 Radiative Transfer

To understand how the composition and structure of an atmosphere can be deduced from
observations, we must understand how light interacts with gases.

2.1.1 Specific Intensity and Flux

Figure 2 | Specific Intensity

The specific intensity Iλ is the amount of energy per
unit wavelength passing through a unit area per unit
time, distributed over a unit solid angle. As such, the
energy travelling from an area dA towards a solid angle
dΩ around the direction n̂ in a time dt is

dE = Iλdλ dA · n̂dΩdt = Iλdλ dA cos θ sin θdθdϕ dt

Consider two surfaces dA and dA′, separated by a distance d in a direction n̂ to dA, and
n̂′ to dA′. Let dA emit light of a specific intensity Iλ towards dA′; what specific intensity I ′λ
will the latter measure? The energy emitted by the former towards the latter is:

dE = Iλdλ dA · n̂dΩdt = Iλdλ[dA cos θ]

[
dA′ cos θ′

d2

]
dt

where we have used dΩ = dA′ cos θ′/d2. This must be equal to the energy received:

dE = I ′λ dλ dA
′ · n̂′dΩ′ dt = I ′λ dλ [dA

′ cos θ′]

[
dA cos θ

d2

]
dt

Setting these two expressions equal, we find Iλ = I ′λ.
For a body whose Iλ is isotropic outwards (θ < π/2), but 0 inwards (θ > π/2), the specific

flux F λ (total energy in any direction per unit wavelength per unit time from a surface dA),
is therefore:

F λ ≡
∮

Iλ cos θdΩ = Iλ

∫ 2π

0

∫ π/2

0

cos θ sin θdθdϕ = πIλ ⇒ F λ = πIλ

This is only true for the specific case that Iλ is isotropic outwards, e.g. from the surface of a
star. If Iλ is known, then the bolometric flux F can be derived by integrating over λ. E.g. for
a black body, Iλ = Bλ ⇒ F λ = πBλ, so

F ≡
∫ ∞

0

F λdλ = π

∫ ∞

0

Bλdλ = 2πhc2

(πkBT/hc)4/15︷ ︸︸ ︷∫ ∞

0

1

λ5

dλ

ehc/λkBT − 1
=

σ︷ ︸︸ ︷
2π5k4

B

15h3c2
T 4 = σT 4

the familiar Stefan-Boltzmann law. The total power from a black body is then
∫
◦ F dA =

4πR2
∗σT

4, and the flux then received at a distance d is then σT 4R2
∗/d

2, as is familiar.
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2.1.2 Moments of Specific Intensity

If Iλ is not isotropic, but is rather axisymmetric about the surface normal (i.e. angular depen-
dence only on µ = cos θ), we can define the mean specific intensity Jλ:

Jλ ≡ 1

4π

∫ 2π

0

dϕ

∫ π

0

Iλ(θ) sin θdθ =
1

2

∫ 1

−1

Iλ(µ)dµ

where we now allow θ ∈ [0, π] so that some Iλ might be directed inwards. We extend this
definition to the nth moment of the specific intensity:

Mn
λ ≡ 1

2

∫ 1

−1

µnIλ(µ)dµ ⇒ Jλ ≡ M0
λ ; Hλ ≡ M1

λ ≡ 1

2

∫ π

0

Iλ(θ) cos θ sin θdθ

Note that the Eddington flux Hλ = F λ/4π, where F λ =
∫ 2π

0

∫ π

0
Iλ cos θ sin θdϕ. The second

moment M2
λ ≡ Kλ is called the K-integral, and is related to radiation pressure.

2.1.3 Absorption, Scattering, and Emission

When light of specific intensity Iλ passes through a volume of gas of thickness ds and cross-
sectional area dA, the specific intensity changes by dIλ. This change is due to three processes,
all of which impart a dIλ proportional to the mass of gas in the volume, ρ dA ds:

• Absorption. The amount of incident light absorbed and dissipated into internal energy:

dEλ,a = −κλρIλ dA ds dΩdλ dt

where the absorption coefficient κλ has units of cm2g−1, and depends on composition.

• Scattering. The fraction of incident light diverted from the incident direction. Iλ refers
to a particular direction; the amount of light heading in that direction is reduced by
being scattered away, but increased by light in other directions being scattered into the
direction of interest. The out-scattering is proportional to the incident intensity, whereas
the in-scattering is proportional to the mean intensity over all directions. Therefore

dEλ,s = (−σλIλ + σλJλ)ρ dA ds dΩdλ dt

where the scattering coefficient σλ has the same units as κλ, cm
2g−1.

• Emission. The thermal emission of the gas. Importantly, emission is independent of Iλ.

dEλ,e = +jtλρ dA ds dΩdλ dt

In local thermodynamic equilibrium (locally homogeneous T , in thermodynamic equilib-
rium with radiation field, behaves as a black body), the energy emitted is equal to the
energy absorbed by a black body, in which case the thermal emissivity jtλ = κλBλ(T ).

The change in specific intensity is therefore given by

dIλ =
dEλ,a + dEλ,s + dEλ,e

dλ dA dΩdt
=

( jλ︷ ︸︸ ︷
κλBλ + σλJλ

−kλIλ︷ ︸︸ ︷
−σλIλ − κλIλ

)
ρ ds
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⇒ 1

ρ

dIλ
ds

= jλ − kλIλ (RTE)

where jλ, due to both thermal emission and out-scattering, is called just the emissivity and
kλ = κλ + σλ the overall extinction coefficient. The above result is called the radiative transfer
equation. It can be alternatively expressed as

1

kλρ

dIλ
ds

= Sλ − Iλ where Sλ ≡ jλ
kλ

=
κλBλ + σλJλ

κλ + σλ

where we have defined the source function Sλ. If κλ ≫ σλ, which we describe as glossy1,
kλ ≈ κλ and Sλ ≈ Bλ. I have no idea how realistic that is: I can’t find any values for κλ or σλ.

2.2 Temperature Profiles

The temperature structure of an atmosphere is due to the energy transport processes occurring
therein: radiation and convection.

2.2.1 Radiative Equilibrium

Radiative equilibrium is a state where the thermal energy leaving a body is equal to that
absorbed. The temperature structure can then be found from balancing inputs and outputs of
radiative energy. Assuming no external sources, the total flux per unit mass f that is emitted
into the radiation field by a portion of the atmosphere is, recalling that jλ is isotropic,

f e =

∫ ∞

0

dλ

∮
dΩ jλ = 4π

∫ ∞

0

kλSλdλ = 4π

∫ ∞

0

(κλBλ + σλJλ)dλ

The total flux/mass which is absorbed from the radiation field is, recalling the definition of Jλ,

fa =

∫ ∞

0

dλ

∮
dΩ kλIλ = 4π

∫ ∞

0

kλJλdλ = 4π

∫ ∞

0

(κλJλ + σλJλ)dλ

Setting these equal, we obtain

∫ ∞

0

kλ(Jλ − Sλ)dλ =

∫ ∞

0

κλ(Jλ −Bλ)dλ = 0 . This is true at

any location in the atmosphere in radiative equilibrium. The T structure (represented by Bλ)
and the radiation field (represented by Jλ) are thus intrinsically linked.

2.2.2 Isolated, Glossy, Grey Atmospheres

RTE can be written: µ

kλρ

dIλ
dz

= Sλ − Iλ

where we have introduced µ = dz / ds, where z is atmospheric altitude. Integrating over solid
angle and recalling that Hλ is the first moment of Iλ, we have 1

kλρ
dHλ

dz
= Sλ − Jλ. Recalling

also that Hλ = F λ/4π, and that the total flux F =
∫
F λdλ, the quantity dF/dz is given by:

dF

dz
=

d

dz

∫ ∞

0

F λdλ = 4π
d

dz

∫ ∞

0

Hλdλ = 4π

∫ ∞

0

dHλ

dz
dλ = 4πρ

∫ ∞

0

kλ(Sλ − Jλ)dλ︸ ︷︷ ︸
0

= 0

1There doesn’t seem to be a specific adjective for “in the absence of scattering”, so I’ve gone with “glossy”,
as that’s what solid surfaces look like without scattering.
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Thus the total flux F is constant in height, for an atmosphere in radiative equilibrium (i.e. not
currently heating up or cooling down due to the radiation field).

Consider the first moment of RTE. Multiplying by µ and integrating over dΩ, we find
dKλ

dz
= −kλρHλ, where we recall thatKλ is the second moment of Iλ; the integral

∮
µSλdΩ = 0,

because Sλ (being a linear combination of the isotropic Bλ and Jλ) is isotropic. Under the
Eddington approximation, which assumes a linear form for Iλ(µ) = I0λ + I1λµ, we find

Kλ =
1

2

∫ 1

−1

(
I0λ + I1λµ

)
µ2dµ =

I0λ
3
; Jλ =

1

2

∫ 1

−1

(
I0λ + I1λµ

)
dµ = I0λ ⇒ Kλ =

Jλ

3

and recalling that Hλ = F λ/4π, we obtain

dJλ

dz
= 3

dKλ

dz
= −3kλρHλ = −3kλρF λ

4π

We now consider a glossy grey atmosphere, where kλ = κλ = κ̄∀λ. Under this approxima-
tion, the opacity can be taken outside of the radiative equilibrium integral above and we have
J ≡

∫
Jλdλ =

∫
Bλdλ = σT 4/π. Integrating the previous expression for dJλ/dz over dλ, and

writing the constant flux F ≡
∫
F λdλ = σT 4

eff for some effective temperature T eff,

d

dz

σT 4

π
= −3κ̄ρ

4π
F ⇒ dT 4

dz
= −3κ̄ρ

4
T 4

eff

giving an ODE for the temperature structure in an isolated atmosphere. We see that T mono-
tonically decreases with height.

We can’t integrate this straight away to obtain T (z) because κ̄ and ρ may change with z.
We instead define the optical depth τλ: dτλ = −kλρ dz; in this case dτλ = dτ = −κ̄ρ dz ∀λ.
The optical depth is a dimensionless property of a path which quantifies how “difficult” it is for
light to travel that path: higher kλ and higher ρ encourage large negative dIλ. As dτλ ∝ − dz,
deeper layers in the atmosphere have a larger optical depth. Changing variables z → τ ,

dT 4

dτ
=

3

4
T 4

eff ⇒ T 4 =
3

4
T 4

eff

(
τ +

2

3

)
where the integration constant comes from the boundary condition that T = T eff at τ = 2/3,
which is often taken to be the conventional “outer edge” of a black body. As τ → 0 (that is,
the top of the atmosphere), T → 2−1/4T eff ≈ 0.84T eff (the “skin temperature” of the body);
the T profile thus tends to an isotherm at high altitudes.

2.2.3 Irradiated Atmospheres

An analysis by Guillot (2010) found the following profile for an irradiated atmosphere:

T 4 =
3

4
T 4

int

(
τ +

2

3

)
+

3

4
T 4

irrf

[
2

3
+

1

γ
√
3
+

(
γ√
3
− 1

γ
√
3

)
e−γτ/

√
3

]
where (deep breath) σT 4

int is the flux emitted by the planet (the same role as T eff in the isolated
case), σT 4

irr ≡ σT 4
∗R

2
∗/a

2 is the flux received at the top of the atmosphere from the external
source, f is an Eddington coefficient accounting for the redistribution of the incident energy2,
and γ ≡ κ̄vis/κ̄th is the ratio of the mean opacity in the UV/visible to that in the IR.

2At the substellar point, f = 1; for a dayside average, f = 1/2; for a planetary average, f = 1/4
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If T irr ≪ T int, we naturally recover the isolated case (above). Thus we henceforth consider
the case T irr ≫ T int, as is the case for Hot Jupiters; the full profiles will be somewhere in
between. For small τ ≈ 0, T tends to a constant:

T (τ = 0) = T irr

[
3

4
f

(
2

3
+

γ√
3

)]1/4
so as in the isolated case, the profile tends to an isotherm at high altitude – though now of
order T irr, which may be 1000s of K, whereas T int ∼ 102K. For larger τ , consider the derivative:

dT 4

dτ
=

3

4
T 4

int +
1

4
T 4

irrf
(
1− γ2

)
e−γτ/

√
3 ≈ 1

4
T 4

irrf
(
1− γ2

)
e−γτ/

√
3

The sign thus depends on the sign of 1 − γ2. If γ > 1, that is, the UV/vis opacity is higher
than the thermal opacity, then dT/dτ < 0: a thermal inversion occurs, where the temperature
rises with altitude. Thermal inversions are therefore induced by species with high κ̄vis, such
as O3 (as on Earth), TiO, VO, or photochemical hazes (as is the case on Jupiter).

Figure 3 | Temperature Profiles of Irradi-
ated Atmospheres. Stolen from
Madhusudhan & Seager (2010). At
both high and low altitudes, the pro-
files tends to an isotherm. Depend-
ing on the atmospheric composition,
there may or may not be a temper-
ature inversion in the middle. These
profiles do not show the effects of
convection, which cause the profile
to tend to an adiabat below p ∼
104bar.

For τ ≫ 1, dT 4/dτ = 3T 4
int/4, so the

derivative d(T/T int)/dτ ∼ T 3
int/T

3 ≪ 1. The
profile thus tends to an isotherm again. Very
deep in the atmosphere, the density is so high
that radiative energy transport is less efficient
than convection, and the profile will tend to an
adiabat (see §2.2.5). This occurs at ≲ 104bar.

2.2.4 Atmospheric Retrievals

Atmospheres are complicated. To properly
model them, one must solve self-consistently
for the temperature profile, the radiation field,
the chemical composition at different altitudes,
the presence of clouds & hazes etc., which re-
quires a lot of computing time. However, most
atmospheric temperature profiles can be ac-
curately approximated by models with rather
small numbers of parameters. One can simi-
larly parametrise the effects of other properties
of the atmosphere, such as composition.

If one is trying to infer atmospheric
properties from a spectrum, one therefore
need not compare it to spectra of accu-
rate, polished model atmospheres found off
the shelf. One can fit it to a spectrum
from a space of rough, not-quite-self-consistent-
but-parametrised atmospheric models, finding
the parameters which best fit the spectrum.
Restricting the model to this approximate
parametrised form greatly reduces the comput-
ing time. This process is called atmospheric
retrieval.
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2.2.5 Convection

Consider a parcel of gas, initially of the same ρ and T of the surrounding atmosphere. Suppose
it is perturbed such that it rises adiabatically, maintaining pressure equilibrium with the sur-
roundings. ρT ∝ p is therefore always matched between the parcel and the surroundings. Now
if the atmosphere is stable to convection, once risen the parcel will sink back down, meaning
it must have become denser, and therefore cooler, than its new surroundings: the parcel must
cool down faster than the surroundings as it rises. By contrast, if the atmosphere is unstable
to convection, the parcel will become less dense than its new surroundings, and thus hotter :
the parcel must cool down slower than the surroundings. Thus

Stable:
dT

dz

∣∣∣∣
parcel

<
dT

dz

∣∣∣∣
surr.

Unstable:
dT

dz

∣∣∣∣
parcel

>
dT

dz

∣∣∣∣
surr.

Look at it again to make sure you get which way round it is.
What is the critical temperature gradient to decide if an atmosphere is stable or unstable

to convection? It is the temperature gradient equal to that of an adiabatically rising parcel of
gas. For such a parcel p ∝ ργ and p ∝ ρT , so

dp

p
= γ

dρ

ρ
,

dp

p
=

dρ

ρ
+

dT

T
⇒ dT

T
=

(
1− 1

γ

)
dp

p

⇒ dT

dz

∣∣∣∣
parcel

=
γ − 1

γ

T

p

dp

dz
= −γ − 1

γ

µ

kB
g ≡ − g

cP

where we have used hydrostatic equilibrium (dp/dz = −ρg), and the definition of the specific
heat capacity cP (per unit mass, units JK−1kg−1). If the atmosphere’s temperature gradient is
less than this value (which is negative – so a steeper negative gradient), then the atmosphere’s
temperature will fall away from the parcel’s, the parcel will be buoyant, and the atmosphere
will be unstable to convection. This sets a minimum temperature gradient – if the gradient is
ever too negative then convection will activate and bring the profile up onto an adiabat.

Note that regions of temperature inversion (dT/dz > 0) are always stable to convection.
Gas parcels rise, cool somewhat to maintain pressure equilibrium, but find themselves amongst
hotter gas and sink back down.

Recall that for an isolated atmosphere, dT 4/dz = −3κ̄ρT 4
eff/4 ∝ −ρ. In the lower atmo-

sphere, where the density is highest (and where the influence of irradiation is reduced so that
the atmosphere can be approximated as isolated), the temperature gradient due to radiative
energy transport is most negative, and so most unstable to convection. Convection therefore
dominates the energy transport at low altitudes, and the temperature profile follows an adia-
bat. Higher in the atmosphere, radiation becomes an efficient transport mechanism due to the
lower density, so the temperature gradient becomes less steep and the atmosphere is stable to
convection. The atmosphere switches modes at the altitude where dT/dz

∣∣
rad.

is equal to the
adiabatic value, typically where p ∼ 104bar. Assuming stellar irradiation is negligible at this
depth, we can write this equality as:

− 3κ̄ρ

16σT 3
F = − g

cP
⇒ ρ

T 3
=

16σg

3κ̄cPF
⇒ ρrc ∝ T 3 ⇒ prc ∝ T 4

Thus on hotter planets, we expect to have to go deeper to see convection take over.
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2.3 Emission Spectra

Direct imaging, by default, measures the planet’s emission spectrum. This spectrum will
mostly be the black-body-ish thermal spectrum of the planet (likely peaking in the NIR).
Many planets additionally have a large albedo A (see §2.6.2), reflecting the light of the star.
As such, superposed onto the planetary thermal spectrum will be a small amount of the stellar
thermal spectrum, peaking in the UV/visible – the overall emission spectrum should therefore
be double-peaked. However, stars being very bright at these wavelengths is the whole reason
that DI measurements are not made in the UV/visible. We therefore consider just the planetary
thermal emission.

We have from §2.1 that 1
kλρ

dIλ
ds

= −µdIλ
dτλ

= Sλ−Iλ. Integrating from τ1 to τ2 < τ1 (upwards),

µ
d

dτλ

(
Iλe

−τλ/µ
)
= −Sλe

−τλ/µ ⇒ µ
(
Iλ(τ2)e

−τ2/µ − Iλ(τ1)e
−τ1/µ

)
= −

∫ τ2

τ1

Sλ(τ)e
−τ/µdτ

⇒ Iλ(τ2) = Iλ(τ1)e
−(τ1−τ2)/µ +

eτ2/µ

µ

∫ τ1

τ2

Sλ(τ)e
−τ/µdτ

where we leave implicit the λ-dependence of τ for to avoid subscripts.

2.3.1 Isothermal Glossy Atmospheres

The simplest model of an atmosphere is an isothermal one, at T . The pressure is such that

dp

dz
= −ρg = − µg

kBT
p ⇒ p(z) = p0 exp

(
− z

Hsc

)
Hsc =

kBT

µg

where we define the scale height Hsc. Earth’s scale height is about 9km.
For an isothermal glossy atmosphere, Sλ = Bλ and Bλ is independent of τλ, as Bλ’s only

path-dependence is on the temperature which we assume constant. Thus,

Iλ(τ2) = Iλ(τ1)e
−(τ1−τ2)/µ +

eτ2/µ

µ
Bλ

∫ τ1

τ2

e−τ/µdτ = Iλ(τ1)e
−(τ1−τ2)/µ +Bλ

(
1− e−(τ1−τ2)/µ

)
Consider a semi-infinite atmosphere, where the radiation originates in the depths of the atmo-
sphere where τ1 → ∞; we observe at τ2 = 0. The factor e−(τ1−τ2) = 0. The specific intensity we
observe is then Iλ(τ=0) = Bλ, independent of composition. Therefore, the emission spectrum
of an isothermal atmosphere is a black body spectrum.

2.3.2 Effect of Temperature Structure

Consider a thin glossy layer of an atmosphere, of optical thickness ∆τλ ≪ 1, between τλ = τ1
and τλ = τ2. The thin layer is at constant temperature, so we can evaluate the integral as
above. Now τ1 − τ2 = ∆τλ ≪ 1, so e−(τ1−τ2)/µ ≈ 1−∆τλ/µ, and we have

Iλ(τ2) ≈ Iλ(τ1)(1−∆τλ/µ) +Bλ∆τλ/µ ⇒ Iλ(τ2)− Iλ(τ1) = ∆τλ(Bλ − Iλ(τ1))/µ

From this we can make the following conclusions:

• If Bλ < Iλ(τ1) (i.e. the layer we are considering is cooler than the layer below, represented
by Iλ(τ1)), then Iλ(τ2) < Iλ(τ1): an absorption feature is observed.
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• If Bλ > Iλ(τ1) (i.e. the layer we are considering is hotter than the layer below: a tempera-
ture inversion), then Iλ(τ2) > Iλ(τ1): an emission feature is observed, and the spectrum
exceeds the black body curve.

• If ∆τλ = 0, for example if we are looking at a wavelength at which the atmosphere is
transparent, Iλ(τ2) = Iλ(τ1). Extrapolating down, the spectrum will simply be that
emitted from the surface: a black body.

We see that for the spectrum to deviate from a black-body spectrum, we require both absorbing
species and temperature variation. For example, for a monotonically-decreasing temperature
profile, the spectrum is a black-body spectrum with bites taken out of it at wavelengths which
are absorbed by species present in the atmosphere. Conversely if Iλ never exceeds the black-
body curve3, then the atmosphere must have a monotonically-decreasing T profile.

2.4 Transmission Spectra

2.4.1 Primary Transit

From §1.1, we have ∆0 ≡ R2/R2
∗, but this was for an opaque sphere. Due to the atmosphere,

∆ is wavelength-dependent. For an atmosphere of wavelength-dependent “height” hλ, we have

∆λ =

(
R + hλ

R∗

)2

≈ ∆0 +
2hλR

R2
∗

≡ ∆0 + δλ ⇒ δλ =
2hλR

R2
∗

where we have neglected terms of order h2/R2
∗. Note that the additional δλ = 2πRhλ/πR

2
∗, the

area of an annulus of radius R and thickness hλ ≪ R divided by the area of the stellar disk,
intuitively. hλ depends on the composition and structure of the atmosphere, so by recording a
transmission spectrum (that is to say, measuring the function hλ), these can be estimated. hλ

is typically bounded between 5 and 8 scale heights Hsc.

2.4.2 Radiative Transfer Model

Consider a plane-parallel slab of gas, and some radiation from a hot star passing through.
Where the temperature of the gas is much colder than that of the radiation, the gas is not going
to be emitting much energy compared to that going through it, and so the atmosphere’s effect
will simply be to absorb. We therefore have Sλ ≪ Iλ, and dIλ/ds = −kλρIλ. Writing dτλ =
kλρ ds (we are now simply considering light passing through some gas at normal incidence, not
looking down into an atmosphere), we then have

dIλ
dτλ

= −Iλ ⇒ Iλ(τλ) = Iλ(0)e
−τλ (Beer-Lambert Law)

The flux received (at Earth) from the star out of transit is F∗λ = πIλ∗R
2
∗/d

2. In transit,
we deduce the flux received at Earth Ftλ by integrating over annuli of solid angle 2πr dr /d2,
including the atmospheric height hλ:

Ftλ =

∫ R

0

Iλ
2πr dr

d2
+

∫ R+hλ

R

Iλ∗e
−τλ(r)

2πr dr

d2
+

∫ R∗

R+hλ

Iλ∗
2πr dr

d2

3The temperature of black-body curve to use as a “baseline” is found by looking at a wavelength where it
is known that the atmosphere is transparent and τλ = 0.
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Approximating the atmosphere as cylindrical (such that τλ is independent of r), this is

Ftλ =
π

d2
[
IλR

2 + Iλ∗
[
e−τλ

(
(R + hλ)

2 −R2
)
+R2

∗ − (R + hλ)
2]]

The flux ratio ∆λ ≡ (F∗λ − Ftλ)/F∗λ is then given by

∆λ = 1− 1

R2
∗

[
Iλ
Iλ∗

R2︸ ︷︷ ︸
≪R2

+e−τλ
(
2Rhλ + h2

λ

)︸ ︷︷ ︸
≈2Rhλ

+R2
∗ − (R + hλ)

2︸ ︷︷ ︸
≈R2+2Rhλ

]
≈ R2 + 2Rhλ(1− e−τλ)

R2
∗

= ∆0 +
2Rhλ

R2
∗

(
1− e−τλ

)
We see that δλ has been modified by a factor 1 − e−τλ . In the limit of τλ → 0 (a transparent
atmosphere), this factor tends to 0 and ∆λ → ∆0. In the limit of τλ → ∞ (an opaque
atmosphere), this factor tends to 1 and δλ takes its previous value. hλ depends on composition,
and τλ definitely does as it relates to kλ.

2.4.3 Secondary Eclipse

Just before the planet is occulted by the star, the flux received is from both the planet and the
star F λ+F∗λ; after occultation we only see the stellar flux F∗λ. The signal size is the fractional
flux drop, equal to F λ/F∗λ. This depends on wavelength as discussed in §1.3; the flux ratio
plateau reveals the planet’s temperature compared to the star’s.

2.5 Chemical Composition

Crucial to the radiative properties of the atmosphere, and hence the observed emission and
transmission spectra, is the extinction coefficient kλ = κλ + σλ. The wavelength dependence
of kλ ultimately depends on the composition of the atmosphere.

2.5.1 Equilibrium Chemistry

A box of gas of a given elemental composition, temperature, and pressure has a unique set of
abundances of all chemical species, once allowed to settle to chemical equilibrium. Some noble
elements will stay in atomic form, but most will form molecules.

Consider a portion of gas, connected to another large reservoir of gas (e.g. some gas con-
nected to the atmosphere) such that any temperature or pressure changes due to chemical
reactions are quickly erased. The first law of thermodynamics gives dU = δQ + δW . The
Gibbs free energy is defined as G = U + pV − TS, so its differential is

dG = dU + p dV + V dp︸︷︷︸
0

−T dS − S dT︸︷︷︸
0

= δQ− T dS︸ ︷︷ ︸
≤0 ∵ 2LT

+ δW + p dV︸ ︷︷ ︸
0

≤ 0

Thus chemical reactions taking place at constant T and p cause a reduction in G. At chemical
equilibrium, by definition no net reactions occur and dG = 0. Thus to find the equilibrium
chemical composition of some gas of a given elemental composition, T , and p, we must find the
chemical composition that minimises the total G of the mixture. To do this, we must consider
the Gi of the individual species involved.
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Although we are taking the overall p as fixed, the partial pressures {pi} depend on how
much of each species there is. pi is what the overall pressure would be if species i were the only
thing there. Ideal gases do not have intermolecular interactions, so the presence of another
species j does not affect the partial pressure of species i. The total pressure is therefore the sum
of all the partial pressures. Ideal gases have p = nRT/V , so pi/ptot = ni/ntot (this quantity
is known as the volume mixing ratio for some reason). Thus whereas the temperature is fixed
for a given species, its pressure depends on the composition, so when we are minimising Gtot,
we need to find the right abundance (and hence ni/ntot, hence pi/ptot) for each species. We
thus need to find the variation of Gi with pi, as this actually depends on the composition. At
thermodynamic equilibrium4, and constant T but not constant pi, we find

dGi = δQi − T dSi︸ ︷︷ ︸
0

+ δWi + pi dVi︸ ︷︷ ︸
0

+Vi dpi − Si dT︸︷︷︸
0

= Vi dpi = niRT
dpi
pi

⇒ Gi(pi) = G◦
i + niRT ln

(
pi
p◦

)
where G◦

i is the Gibbs free energy of species i at some standard pressure p◦, usually taken to
be 1 atm ≈ 1 bar = 105 Pa. The total Gibbs energy of the whole gas is therefore:

G =
∑
i

Gi(pi) =
∑
i

[
G◦

i + niRT ln

(
pi
p◦

)]
=

∑
i

ni

[
G◦

m,i +RT ln

(
ptot
p◦

pi
ptot

)]

⇒ G

RT
=

∑
i

ni

[
G◦

m,i

RT
+ ln

(
ni

ntot

)
+ ln

(
ptot
p◦

)]
We must therefore minimise the above expression subject to the following constraint:∑

i

aiµni = bµ ∀µ

where bµ is the number density of element µ, and aiµ is the number of atoms of element µ in
species i. For instance, aCH4,H = 4. Unsurprisingly this optimisation is a task for computers.

Example: CO2 and CH4. In a hydrogen-rich atmosphere, an important reaction is

CO + 3H2 ⇌ CH4 +H2O

At p = 1bar, if T ≳ 1200K, then the Gi are such that the optimal composition has more CO
than CH4; if T ≲ 1200K, then there is more CH4 than CO5. Jupiter and Saturn have lots of
CH4; hot Jupiters often have lots of CO.

Composition is not just a function of p and T , but also of elemental composition. In
particular, the above equilibrium depends on the C/O ratio. Solar abundance atmospheres
have an excess of oxygen: C/O = 0.5, so at low temperatures (where the C is all in CH4),
the oxygen all goes into H2O. At high temperatures where CO is stable, C takes half of the
O atoms into CO; with the other half remaining in H2O molecules. If however, the elemental
composition has C/O = 1, then at high temperatures C can take all of the O molecules, and
there will be no H2O left. H2O is therefore a good tracer of an exoplanet’s overall C/O ratio.
These points are illustrated in Figure 4, stolen from Madhusudhan (2012).

Whereas H2O is a good tracer of the C/O ratio, CO2 is a good tracer of the overall metal-
licity: as metallicity increases, metal-rich species like CO2 become much more abundant.

4where now δQ = T dS
5Higher temperatures generally favour whichever side has more molecules. For the reaction N2 + 3H2 ⇌

2NH3, higher temperatures (T ≳ 500K) favour N2 over NH3.
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Figure 4 | Dependence of Composition on Temperature and C/O ratio. We see that tem-
peratures above 1200K favour CO (grey) over CH4 (blue). At low T therefore, the oxygen
pretty much all goes into H2O. At high T , the amount of oxygen taken from the H2O de-
pends on how much C there is available to form CO. With little carbon (C/O < 1), most
of the H2O survives as there is ample O to go around. With lots of carbon (C/O > 1),
all the oxygen is stolen into CO, with little H2O remaining.

2.5.2 Non-equilibrium Processes

Real exoplanetary atmospheres are not in equilibrium, with vertical mixing and photochemical
processes not allowing the atmosphere to settle. Certain species can be approximated as being
in equilibrium with each other if the timescale for the reaction (or, more precisely, the reaction’s
rate-limiting step) is significantly shorter than the timescale for all non-equilibrium processes.

Vertical Mixing. As p and T vary with altitude in an atmosphere it may be that in
equilibrium e.g. CO would be dominant below a certain altitude, reacting away into CH4 higher
up. In reality, updrafts dredge lower species up into the upper atmosphere. This explains why
CO is found even in the upper atmospheres of cool planets. To tell whether this process is
important, we must compare its timescale to the reaction timescale. The rate-limiting step for
the CO ⇌ CH4 equilibrium turns out to be H2 + CH2OH ⇌ CH3OH+H, so τch is given by:

d[CO]

dt
= −k[H2][CH2OH] ⇒ τch ≡ [CO]

|d[CO]/dt |
=

[CO]

k[H2][CH2OH]

By comparison, the mixing timescale depends on the Eddy diffusion coefficient Kzz:

τvm ∼ L2

Kzz

where the length scale L is approximately 0.1Hsc. Anyway, if τvm ≪ τch, then vertical mixing
will dominate and the region of the atmosphere where this holds will be chemically homoge-
neous. This is usually the case in the upper atmosphere, where the densities of the relevant
species is low and so τch is too long for chemical equilibrium to ever be achieved.

The two timescales are equal at the “quench level” zq, where p ∼ 1bar. We can thus
approximate that the atmosphere above zq is roughly homogeneous. Below zq, the atmosphere
is roughly in chemical equilibrium, and the composition varies with height alongside p and T .

Photochemistry. When p falls below ∼ 10−3bar, UV/visible radiation directly interferes
with the chemistry, dissociating molecules into free radical species (e.g. O2 → 2O) and their
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by-products (e.g. O3). For example, the abundances of oxygen species in the upper atmosphere
are governed by the Chapman cycle:

O2 → 2O O +O2
M−→ O3 O3 → O+O2 O+O3 → 2O2

where reaction 2 requires a catalytic species M to carry off the energy produced; any abundant
molecule will do. Each of these reactions has a rate constant ki, such that each reaction
proceeds at a rate ki

∏
j [Xj] ,where [Xj] are the concentrations (number densities, perhaps) of

the reactants. The rate of change of [O] and [O3] are then

d[O]

dt
= 2k1[O2]−k2[M][O][O2]+k3[O3]−k4[O][O3];

d[O3]

dt
= k2[M][O][O2]−k3[O3]−k4[O][O3]

In the steady state, both of these time derivatives will be 0, so the second equation gives:

[O3] =
k2[M][O][O2]

k3 + k4[O]
≈ k2[M][O][O2]

k3

where we have used the experimental fact that k3 ≫ k4[O], that is, reaction 3 is the dominant
loss mechanism for O3. The concentration of O is much harder to estimate than O2; luckily it
can be eliminated: summing the two rate equations in steady state, we find

0 = 2k1[O2]− 2k4[O][O3] ⇒ [O] =
k1[O2]

k4[O3]

⇒ [O3] =
k2[M][O2]

k3

k1[O2]

k4[O3]
⇒ [O3] =

√
k1k2[M]

k3k4
[O2]

Now [O2] decreases with altitude, experimentally k2[M]/k4 is roughly constant, and k1/k3
increases with altitude. Thus there will be an altitude at which [O3] rises to a maximum con-
centration (due to the increasing production of O by reaction 1) before fading away (alongside
every other molecule). This creates an ozone layer.

Many photochemical by-products have a high κ̄vis, giving the upper atmosphere a γ > 1.
As discussed above, this induces thermal inversions, such as that in the Earth’s stratosphere.

Thermal Escape. At yet higher altitudes (p ∼ 10−6 − 10−9bar), particles have thermal
speeds greater than the escape velocity and can leave the planet. The Maxwell distribution,
proportional to v2e−mv2/2kBT , peaks at vp =

√
2kBT/m. The temperature of atmospheric es-

cape is for some reason taken to be such that 6vp is greater than the escape velocity,
√
2GM/R:

6

√
2kBT

m
>

√
2GM

R
⇒ T >

GMm

36kBR

We see that this is proportional to m: smaller particles can escape more easily, so this process
is particularly of importance in the upper atmosphere where most species are atomised by
the high UV flux (rather than due to R, which is not much different to its surface value).
For a H atom on Mars, the RHS is about 40K; for Earth, about 200K. Hence we have an
atmosphere and they don’t. Atmospheric escape can create a trailing cloud of atoms, leading
to a dramatically asymmetric transit profile.

Hydrodynamic Escape. In Hot Jupiters close to stars with a high UV flux, thermal
escape is rapid. The exodus of thermally escaping atoms pushes larger species (e.g. C, N, O)
out with them, like adults being swept away by a crowd of running children. This may lead to
Chthonian planets, terrestrial former gas giants whose atmospheres abandoned them.
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2.6 Clouds & Hazes

Clouds are particles suspended in the atmosphere which have condensed out of the gas phase
onto a nucleus (e.g. silicate grains). Clouds may consist of H2O (as on Earth), NH3, CH4 (as
in Solar System gas giants) or high-temperature condensates like KCl and SiO2 (alkali/silicate
clouds). Hazes are suspended particles generated by other processes, e.g. photochemical species
with high σλ, or updrafts bringing sand grains from the surface high into the atmosphere.

2.6.1 Scattering

Clouds and hazes have a large σλ at optical wavelengths. There are two types of scattering:

• Rayleigh scattering occurs when the particle size is ≪ λ: even gaseous molecules do it.
It originates from the polarisability of the particle in response to the oscillating E field
of the light. Rayleigh scattering has a characteristic σλ ∝ λ−4 for any composition.

• Mie scattering requires a particle size ≳ λ, and is the solution to Maxwell’s Equations
for plane waves incident on spherical particles. σλ has no simple functional form; some
species have resonances at particular λ.

2.6.2 Albedo

Scattering leads to reflection, which is quantified by albedo A. Again, there are two types:

• Bond albedo is simply the ratio of the reflected light (integrated over all wavelengths)
to that of the incident light. Intuitive.

• Geometric albedo is the ratio of the reflected light observed at full phase (i.e. at sec-
ondary eclipse, when we can see the whole dayside) to that which would be observed
from a Lambertian disk of the same angular size, whatever that means.

2.6.3 Effects on Spectra

Cloud decks completely block light from below, so effectively bring the observable “surface” of
an exoplanet up into the atmosphere: rather than the planet having a radius R, it appears to
have a radius R + hc, where hc is the height of the cloud deck. The effect of this depends on
the spectrum type, but generally leads to muted spectral features.

• Emission Spectra. It was shown in §2.2 that at high altitudes, atmospheres become
isothermal. Thus if the cloud deck is high enough, the atmosphere might appear to be
isothermal in its entirety. It was shown in §2.3.1 that an isothermal atmosphere has the
same emission spectrum as a black body, with no spectral features, so a high cloud deck
might cause the exoplanet to simply look like a black body. If the cloud deck is somewhat
lower, such that T does vary slightly above the clouds before settling onto an isotherm,
then the slight temperature variation will lead to muted spectral features in the IR.

In the optical, the albedo effect of clouds means that the planet is brightened.

• Transmission Spectra. Due to the cloud deck blocking everything from below, δλ =
2Rhλ/R

2
∗ becomes

δλ =
2(R + hc)(hλ − hc)

R2
∗

≈ 2R(hλ − hc)

R2
∗
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which is smaller by a factor (hλ − hc)/hλ. Again, clouds lead to muted spectral features.

Problematically, a species’ spectral features being muted is degenerate with that species simply
having a low abundance. The degeneracy may be broken by looking at the optical, where that
species’ abundance may be estimated from scattering signatures.

2.7 Atmospheric Dynamics

3D atmospheric models, known as general circulation models, exploit the fact that atmospheres
are very thin, simplifying the Navier-Stokes equations into so-called “primitive equations”.
Several qualitative results of these models are presented here.

2.7.1 Winds

It can be shown that the acceleration due to a horizontal pressure gradient ∆ ln p is of or-
der R∆T∆ ln p/R, where the ideal gas constant R ∼ 3700JK−1kg−1, and ∆T is the day-
night temperature contrast. The advective acceleration term in the Navier-Stokes equations is
|u · ∇u| ∼ u2/R. Setting the two equal gives a characteristic wind speed in the steady state:

u ∼
√
R∆T∆ ln p

For ∆T = 400K and ∆ ln p = 3, this gives u = 2.1kms−1. This is detectable using high-
spatial-resolution Doppler spectroscopy of the transmission spectrum. Also, the phase curves
of exoplanet emission spectra are often asymmetric around the secondary eclipse, suggesting
that the hottest point is not the substellar point, but is offset by the winds.

2.7.2 Day-Night Temperature Contrast

The day-night temperature contrast on a tidally locked planet depends on the efficiency of
atmospheric circulation. If it is efficient, temperature contrasts are quickly ironed out. If slow,
the contrast can remain.

There’s some very dodgy derivations in this section; the result is that for larger T , hotter
planets have a much larger flux, and so radiate away heat outwards much quicker than they
advect that energy around the planet. As such, hotter planets end up with a relatively cool
night side (relative to the dayside), and so a larger temperature contrast.

2.7.3 Bands

Bands emerge due to the variation of the Coriolis force with latitude. The Coriolis frequency
is given by 2Ω sin θ, and the latitudinal gradient of this is β = 2Ω cos θ/R. The characteristic
width of bands is given by the Rhines length Lβ ∼

√
u/β ∼

√
Ru/2Ω. The number of these

bands that can fit onto a planet’s surface is therefore

Nbands ∼
R

Lβ

∼
√

2ΩR

u

For Hot Jupiters, Ω ≈ 2π/1day, u ∼ 1kms−1, so Nbands ∼ 1. For Jupiter, Ω ≈ 2π/0.4day,
u ∼ 40kms−1, so Nbands ∼ 10. Other Solar System gas giants have smaller radii and higher
wind speeds than Jupiter, and hence show no visible banding.
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3 Interiors

3.1 Polytropes

Two equations of state governing the interior are: dm
dr

= 4πr2ρ, and dp
dr

= −ρg = −Gmρ
r2

, where
m(r) is the mass contained within a radius r. Substituting m from the second equation into
the first, and substituting the polytropic gas equation of state p = Kρ1+1/n, we obtain :

− d

dr

(
r2

Gρ

dp

dr

)
= 4πr2ρ ⇒ − K

4πG

n+ 1

n

1

r2
d

dr

(
r2

ρ
ρ1/n

dρ

dr

)
= ρ

Substituting ρ(r) = ρcθ(r)
n, where the constant ρc = ρ(0) (hence requiring θ(0) = 1),

Kρ(1−n)/n(n+ 1)

4πG︸ ︷︷ ︸
α2

1

r2
d

dr

(
r2
dθ

dr

)
= −θn ⇒ 1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn (LE)

where we have defined α by that horrible mix of constants, and the variable ξ = r/α. The
result is the Lane-Emden equation, whose solutions θn(ξ) depend on the value of n. The radius
R is given by R = αξn, where ξn is the first zero of θn(ξ), as it is here that ρ ∝ θn(ξn)

n = 0.
For example, for n = 1, θ(ξ) = sin ξ/ξ, so we would have ξn = π and R = απ.

3.1.1 Mass-Radius Relations

The Lane-Emden equation can be used to give an n-dependent relation between M and R:

M = 4π

∫ R

0

r2ρ(r) dr = 4πρcα
3

∫ ξn

0

ξ2θn(ξ)
ndξ = −4πρcα

3

∫ ξn

0

d

dξ

(
ξ2
dθ

dξ

)
dξ

= −4πρcα
3ξ2n

dθn
dξ

∣∣∣∣
ξn

∝ ρ1+3(1−n)/2n
c = ρ(3−n)/2n

c

whereas R = αξn ∝ ρ
(1−n)/2n
c . Eliminating ρc, we can therefore write R ∝ M (1−n)/(3−n).

For a constant-density sphere, we have p independent of ρ so n = 0. Hence R ∝ M1/3.
For an adiabatic monatomic gas, or a degenerate gas, p ∝ ρ5/3 ⇒ n = 3/2, so R ∝ M−1/3;

indeed this is the case deep within very large gas giants, which have either convection of a gas
or degeneracy occurring within.

When plotting R against M , models suggest that R ∝ M1/3 approximates planets quite
well up to about MJ , at which point the relation begins to turn over to R ∝ M−1/3 by about
10MJ ; the plot peaks at about 4MJ . At about 13MJ , the planet becomes a brown dwarf
as D fusion becomes possible. As D is only ∼ 10−5 as abundant as H, and its fusion doesn’t
release much energy, the brown dwarf is largely supported by electron degeneracy pressure so
R ∝ M−1/3. Beyond about 70MJ , hydrogen fusion becomes possible, the degeneracy is lifted,
n falls below 1 and the plot begins to rise again.

The shape of the plot is independent of composition, but for atmospheres of higher µ, the
radius shrinks somewhat as the atmosphere is simply heavier, requiring greater pressures.

These models tend to under-predict the radii of gas giants, for several possible reasons:

• External energy sources. These models do not account for external energy sources
(irradiation, tidal heating etc.), which can puff up the planet.

• Delayed contraction. As a gas giant forms, it contracts as it cools. However, this may
be delayed, e.g. by rapid inward migration, or high-κλ species trapping heat.
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4 Habitability

There are three requirements for life as we know it: bioessential elements (CHNOPS), an energy
source (e.g. starlight) and liquid water. The latter is the least likely to occur on an exoplanet.

The habitable zone is defined as the range of distances from the star such that if Earth were
placed there, liquid water would be present on the surface. The inner boundary of the Sun’s
habitable zone is at 0.97au. If the Earth were closer than this, the oceans would evaporate,
and the stratosphere would become saturated with water, which would then photolyse into H2,
which would then escape. The outer boundary of the Sun’s habitable zone is at 1.7au, at which
point CO2 would freeze out and the greenhouse effect would fail. Note that Mars is at 1.5au,
within the habitable zone, but its atmosphere (or rather lack thereof) makes it unsuitable for
liquid water to exist on its surface.

All else being equal, the surface temperature of a planet will be larger if it orbits a hotter
star. Thus for cool stars (e.g. RDs, BDs), the habitable zone will be contracted. Around M
dwarfs with M∗ ∼ 0.1M⊙, the HZ is around 0.1au from the star.

Habitable zones also move out over time, as stars generally brighten over their lifetimes.
Factors affecting habitability other than distance to the star may be grouped as follows:

• Astrophysical factors. Stellar properties and activity, orbital architecture (eccentricity,
obliquity, presence of other planets), whether water can be externally delivered by e.g.
comets, magnetospheric protection from the solar wind

• Planetary conditions. Atmospheric composition (hence greenhouse effect and UV
protection), geological activity e.g. volcanism and plate tectonics (to outgas greenhouse
gases like CO2)

4.1 Biosignatures

An ideal biosignature species cannot be formed abiotically (such as geochemically or photo-
chemically), and must be observable (have high abundance and strength of spectral features).

Candidate biosignatures are divided into primary and secondary metabolic by-products:

• Primary: products of processes used by life to convert environmental resources into
biomass and energy. On Earth, these include:

O2, H2, CO2, N2, N2O, NO, NO2, H2S, CH4, H2O

Many of these are present naturally, but O2 is almost uniquely biotic in origin. However,
around small active stars, O2 can be produced abiotically.

• Secondary: products not directly needed for life to survive, but for secondary benefits
e.g. responses to changing conditions. On Earth, these include:

OCS, CS2, PH3, CH3Cl, CH3Br, (CH3)2S

These cannot be produced abiotically, but are only present in sub-ppm concentrations
on Earth. It may be possible to detect these in the atmospheres of super-Earths around
M dwarfs, or on hot worlds with large Hsc.

The current best bet for a good biosignature would be to find O2, N2O, or perhaps CH4

in the atmosphere of an Earth-like planet around a Sun-like star. However, as life on other
planets may be totally different to life on Earth, it will be important to keep an open mind. . .
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