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1 Formation

1.1 Protoplanetary Disks

When large (∼ 105au) clouds of gas become gravitationally unstable, they collapse, forming
a massive central object surrounded by an accretion disk. When the central object exceeds
13MJ , the pressure and temperature at its core is sufficient to ignite D fusion (forming a brown
dwarf) and then at 80MJ , H fusion: a star is born.

1.1.1 Gas & Dust

The gas in the disk is mostly H2. H2 is difficult to observe – it is symmetric and so IR-inactive.
CO is IR-active and fairly abundant, so is often used as a proxy for the total disk mass,
assuming a fixed CO-H2 ratio. Further, CO solidifies below 17K, so it cannot be used in the
cool outer disk.

If the disk is resolved, one can spatially map the radial velocity of CO absorption lines,
revealing the rotation of the disk. If not, all you have is the superimposed SEDs of the star and
the disk. The stellar SED is roughly a blackbody; the disk has a range of temperatures, so its
SED will be a blurred blackbody spectrum. The inner edge of the disk is somewhat cooler than
the star1, so the superposed spectrum is double-peaked. The intensity Idiskν from an annulus
radius r of the disk will be Bν(T )(1−e−τν ), where T is the disk temperature at radius r, and τν
is the optical depth to the observer. τν is approximately given by κνΣ(r)/ cos i, where Σ(r) is
the surface density (almost entirely due to dust) and i is the inclination angle2; for an optically
thin disk τ ≪ 1. An observer will therefore receive a total intensity3:

Irecν =

∫ ∞

rin

Idiskν

2πr dr cos i

D2
=

cos i

D2

∫ ∞

rin

Bν(T ) (1− e−τν )︸ ︷︷ ︸
≈τν

·2πr dr = 1

D2

∫ ∞

rin

Bν(T )κν ·2πr drΣ(r)

Iν thus approximately scales with the total disk mass; this approximation works best at large
wavelengths, where the disk is optically thinnest.

The other component of a protoplanetary disk is the dust, consisting of sub-µm solid silicate
particles. Dust only makes up ∼ 1% of the mass.

1The star blasts out a cavity at the centre of the disk, separating it from the disk’s inner edge.
2i = 0: face-on. i = π/2: edge-on.
3Confusingly, this intensity was labelled Fν in the notes.
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1.1.2 Vertical Structure

The disk can be assumed in vertical hydrostatic equilibrium. As such the gas obeys ∂p
∂z

= −ρgz:

⇒ c2s
∂ρ

∂z
= −ρΩ2z ⇒ ρ(z) ∝ exp

(
− z2

2H2

)
where H ≡ cs/Ω

The vertical structure of the disk (through its characteristic thickness H) is therefore related
to the local thermodynamics (cs) and the global gravity (Ω). Substituting for cs and Ω,

H =

√
kT

µmp

a3

GM∗
∝ T 1/2a3/2

As T scales rather weakly with a (something like T ∝ a−3/4), H increases with a and the gas
in the disk therefore flares outwards.

1.1.3 Gravitational Instability

The radial momentum equation is

vr
∂vr
∂r

−
v2ϕ
r

+
1

ρ

∂p

∂r
+

GM∗

r2
= 0

Considering oscillatory radial perturbations, e.g. p = p0 + p̃ei(ωt+kr), one can find4:

ω2 = Ω2
r − 2πGΣ|k|+ c2sk

2

where Ωr is the frequency of radial oscillations; in a Keplerian disk Ωr = Ω. We see that for
large k, we have sound waves, and for small k the oscillations are due to the global potential,
as expected. For intermediate k, the local gravitational force (∼ GΣ) may be strong enough
to cause ω2 < 0 and hence perturbations to grow exponentially: the disk will be susceptible to
gravitational instability (GI). The quadratic on the RHS is negative for some k provided

csΩr < πGΣ ⇒ Q ≡ csΩr

πGΣ
< 1

where we define the Toomre parameter Q. If Q < 1, the disk will be unstable to GI. For early
Jupiter parameters, T ≈ 75K, a ≈ 5au, H/a ≈ 0.05, Σ ∼ 103gcm−2, we find Q ∼ 5, suggesting
that the Solar System was stable to GI: this was not how our planets formed. However, we see
that Q ∝ csΩr ∝ T 1/2a−3/2, so the small population of giant planets found at large distances
from their stars may have formed by GI in the cool outer regions of their PPDs.

4This is treated better in the Dynamics of Astrophysical Disks course
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1.2 Core Accretion Model

A model which better explains the formation of the Solar System is the core accretion model:

1.2.1 Grain Formation

Dust particles are initially so small (< 1µm) that they are easily swept around by the gas – their
motion is strongly “coupled” to the turbulent motion of the gas, sweeping the dust particles
into eddies. This facilitates collisions between the particles, which may then stick together
electrostatically to form dust grains (> 1µm). Sticking is particularly likely (as opposed to
bouncing off each other) if the dust has some ice on it.

1.2.2 Decoupling, Settling, and Decoupling Again

When the grains become > 1mm, they have enough inertia that their motion is no longer
completely dictated by the gas – the grains “decouple” from the gas, though they still experience
drag from it. As a result, the dust eventually settles into Keplerian orbits in the midplane of
the disk. The equation of motion of the grains in the z-direction is

∂2z

∂t2
= − 1

τf

∂z

∂t
− Ω2z

where τf is the frictional timescale of gas drag force on the grains. This equation is that of a
damped harmonic oscillator: if τf → ∞ then there is no drag and the grains perform inclined
Keplerian orbits; if τf = 0 then we require ∂z/∂t = 0 and no settling occurs. These limits are
both unrealistic; Epstein5 found that a good model for spherical grains is

τf =
ρs
ρg

Rs

cs
=

ρsRs

ρgHΩ

where ρg and ρs are the densities of the gas and the solid grains and Rs is the grain radius.
One finds that dust settles onto the midplane very quickly6 following decoupling.

After settling in the midplane, the azimuthal drag forces first circularise the grains’ or-
bits. Over slightly longer timescales, the azimuthal gas drag robs the grains of energy and
AM, causing them to fall inwards. This azimuthal drag only exists because the gas orbits
at sub-Keplerian velocities, due to the outward gas pressure gradients offsetting some of the
central gravitational force, reducing the overall centripetal force on the gas. The grains (appar-
ently?) are not affected by these pressure gradients, so orbit at Keplerian speeds, experiencing
a significant headwind (∼ 100ms−1) as they pass through the gas.

The drag experienced by the grains is so significant that if they don’t grow quickly enough
they should fall to the centre in a matter of centuries. If they can quickly grow to a size of
≳ 1m then their inertia becomes large enough that even the gas drag becomes negligible (this
can be thought of as a second decoupling), but the theoretical difficulties for such quick growth
lead this to be known as the metre-size barrier or cm-size problem. It is unclear exactly how
grains get from ∼mm size to ∼100m size, but clearly they must do somehow! When they do
so, the bodies are called planetesimals.

5Not that one
6The notes give ∼ 107yr; others suggest shorter timescales of ∼ 105yr or even ∼ 103yr
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1.2.3 Planetesimal Growth

Planetesimals grow by collision with each other and by accreting grains, forming planetary
embryos. The latter process can be modelled as the planetesimal, of radius R and mass M
streaming through a medium with a density of solid particles ρ at relative speed vrel and
accreting everything that hits them:

dM

dt
= fg · πR2ρvrel

where fg ≥ 1 is a factor due to the phenomenon of gravitational focusing, whereby particles
with impact parameters > R can end up hitting the planet as they are drawn in by the
planetesimal’s gravity. To calculate this parameter, let b be the maximum impact parameter
at which a particle would not escape the planetesimal when travelling at vrel, i.e. its periapsis
is the planetesimal’s radius R. To find b in terms of other parameters of the problem, we use
conservation of angular momentum and energy to give

bvrel = RvI ;
1

2
v2rel =

1

2
v2I −

GM

R
⇒ b2 = R2

(
1 +

2GM

Rv2rel

)
= R2

(
1 +

v2esc
v2rel

)
where vI is the particle’s speed at closest approach (in this case, tangential impact), and we
recognise v2esc = 2GM/R as the square of the escape velocity at the planet’s surface. The
effective cross-section of the planetesimal is then altered from πR2 to πb2, so we identify
fg = 1 + v2esc/v

2
rel.

We can use this to estimate the mass growth over time in different regimes. If the plan-
etesimal is small or vrel is large then we will have fg ≈ 1, so dM/dt ∝ R2 ∝ M2/3. In
the opposite regime, fg ≈ v2esc/v

2
rel ∝ M/R, so dM/dt ∝ MR ∝ M4/3. We can define a

mass-doubling timescale τ = M(dM/dt)−1, seeing that this goes as M−1/3 and M1/3 in the
respective regimes. The mass growth accelerates in both regimes, but especially after the mass
is such that vesc > vrel. At this point, though there will be an ensemble of planetesimals of
various sizes, the few that are lucky enough to cross this threshold will very quickly gobble up
the rest of the material in the disk thanks to gravitational focusing, forming planetary embryos
of ∼ 105m. Very little material is left for the unlucky planetesimals, which will forever remain
as such (e.g. Phobos & Deimos; Arrokoth), never to achieve their planetary potential. This
dominance of a small number of rapidly-growing bodies is known as oligarchic growth.

The matter swept up by these oligarchic embryos comes from within an annulus of the disk,
characterised by the region within which the embryo’s gravity dominates over both that of the
star as well as centrifugal effects. If M ≪ M∗, then L1 and L2 are roughly equidistant from
the planet at a distance RH ≪ a, which can be found by setting the combined gravitational
forces of the star and the planet at L2 equal to the centrifugal force there:

Ω2(a+RH) =
GM∗

(a+RH)2
+

GM

R2
H

⇒ 3GM∗

a3
RH ≈ GM

R2
H

⇒ RH ≈
(

M

3M∗

)1/3

a

Planetesimals in the disk at this stage move on Keplerian orbits, rather than dispersively. As
such the relative velocity of a planetesimal at radius a+∆a from the star is approximately

vrel = aΩ(a)− (a+∆a)Ω(a+∆a) ≈ 1

2
Ω∆a
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where we have used the fact that aΩ ∝ a−1/2. As such we can write

v2esc
v2rel

≈ 2GM

R
· 4a3

GM∗∆a2
= 24

R3
H

R∆a2
∝

(
RH

∆a

)2
RH

R

so RH is a convenient length scale to use, for instance, for simulations.
Planetary embryos continue to grow until they have cleared their “feeding zone”, which

turns out to be an annulus of within ≈ ±4RH of the embryo. When this feeding is complete,
all the nearby planetesimals have been accreted and the embryo becomes isolated in a gap in
the disk. Its mass at this stage, the isolation mass, is given by

M iso ≈ 2 · 2πa · 4RH · Σ(a)

With RH ∝ a and data suggesting Σ(a) ∼ a−3/2, this suggests that closer planets should end
up being smaller, simply because their orbits are shorter. There are further complications with
there likely being a higher surface density beyond the ice line (between Mars and Jupiter in
the Solar System), so Σ(a) is likely to be a more complicated function. With the fast mass
growth rates discussed above, embryos likely reach their isolation masses within only ∼ 106yr.

1.2.4 Envelope Accretion

A planetary embryo may form the core of a rocky planet, or if there is a lot of gas left in the
disk it may accrete the gas into a surrounding envelope, forming a gas giant planet. The gas
is blown away from the inside by the active new star, so there is only ∼ 107yr to accrete gas.

Similarly to planetesimal growth, the envelope accretion can be modelled by

dM

dt
∼ πR2

gcρgvrel ∼
Σ

H
ΩR2

gc

where Rgc is the gas accretion radius (described shortly), and we have substituted ρg ∼ Σ/H
and vrel ∼ ΩRgc. Now for gas accretion to occur, the gas must pass within a radius such that
the embryo’s gravity dominates over not only the star’s gravity and centrifugal force (as RH),
but also the gas pressure. As such the gas can only be accreted if it comes within both RH

and the Bondi radius, RB ∼ GM/c2s. Thus Rgc = min(RH , RB).
Clearly, gas accretion can only occur if the mean velocity of the gas (of order cs ∼ HΩ) is

less than the escape velocity at the surface of the embryo:

HΩ <

√
2GM

R
⇒ M >

RH2

2G

GM∗

a3
⇒ M >

H2M∗R

2a3

However the cutoff here is ∼ 0.1MMoon, so this is not a barrier.
Another potential problem is the energy released by the falling gas. If this energy cannot

be radiated away efficiently enough (due to high atmospheric opacity), then the gas will heat
up, increase mean velocity, and escape. This occurs if the Kelvin-Helmholtz timescale is longer
than the time it takes gas to dissipate in the disk (∼ 107yr). Perhaps this happened with
Uranus and Neptune.

However, if the planet core is large enough (≳ 16ME), atmospheric models suggest that
hydrostatic equilibrium suddenly fails (somehow?) and the envelope collapses. Accretion of a
gas envelope can then become rapid; perhaps this happened with Jupiter and Saturn.
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1.3 Migration

Forming planets interact with the remains of the disk: inner regions are orbiting the star more
quickly; outer regions more slowly; the planet exchanges angular momentum with the disk.

Consider a planetesimal (m) in the disk passing on the outside of a large planetary embryo
(M) at impact parameter x and relative azimuthal velocity vy = −v0 ≈ −1

2
Ωx. Assuming only

a weak interaction, such that x and vy are approximately constant, the horizontal (x-directed)
acceleration of the body will be approximately7

v̇x ≈ − GM

x2 + v20t
2

x√
x2 + v20t

2

with x and v0 approximately constant, this gives a change in x-velocity and deflection angle:

∆vx ≈
∫ ∞

−∞

GMx

(x2 + v20t
2)

3/2
dt =

2GM

xv0
⇒ δ ≈ 2GM

xv20
≈ 8GM

Ω2x3
= 8

M

M∗

(a
x

)3

Apparently, vy also changes by ∆vy = v0(1 − cos δ) ≈ v0δ
2, that is, the embryo drags the

planetesimal forward with it slightly, increasing its (relative, negative) velocity. The gain in
angular momentum of the planetesimal is then

∆J ≈ mav0

[
8
M

M∗

(a
x

)3
]2

≈ ma
1

2
Ωx · 64

(
M

M∗

)2(a
x

)6

= 32ma2Ω

(
M

M∗

)2(a
x

)5

This angular momentum is robbed from the planet, which therefore is encouraged to inspiral.
For a continuum, the ∆J on the planet due to the outer portion of the disk may be written

∆Jouter ≈ −32a7Ω

(
M

M∗

)2 ∫ ∞

∆r

2πxΣ(x) dx · x−5

The integrand has a large negative power of x, so we can approximate Σ(x) as taking its value
in this region of the disk and bring it outside the integral; we then find

∆Jouter ≈ −64π

3
a4ΩΣ

(
M

M∗

)2( a

∆r

)3

∆Jinner has the same form but with a plus sign. A net torque comes from the difference in
Σ across the gap (of width 2∆r). Approximating Σ(a) ∝ a−β as a power law, we will have
dΣ/da = −βΣ/a, and hence

∆Jtot ∼
64π

3
a4Ω

(
M

M∗

)2( a

∆r

)3
[
βΣ

a
· 2∆r

]
=

128πβ

3
a4ΩΣ

(
M

M∗

)2( a

∆r

)2

Note that this is greater than 0 because the inner disk has a greater surface density; the
net effect is thus to push the planet out, as it yoinks angular momentum from the inner-
orbiting planetesimals. To obtain a torque, we divide the net angular momentum change by
the timescale over which the interaction occurs, ∼ 2π/Ω, giving8

T ≈ 64β

3
a4Ω2Σ

(
M

M∗

)2( a

∆r

)2

7The notes have the wrong formula here, writing the total force instead of the x-directed force. The only
change is a factor of π/2.

8Queloz ignores the prefactor but as it’s ∼ 102 that seems naive.
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In reality, the migration effect is the other way around, due to complicated resonance effects
and non-monotonicities in Σ(a). One also finds migration timescales of 104−105yr – the planets
should fall into their star almost immediately! There’s obviously something else going on here,
but clearly it’s very easy to move a planet!

1.4 Timing

Planet formation can be timed with radioactive dating, under the assumption that the radioac-
tive elements were formed at the time of formation of the Solar System. A particularly useful
isotope for this is 26Al, which β+-decays into 26Mg with a half-life of τ = 717kyr, similar to
planet formation timescales. We therefore have

26Mg(now) = 26Mg(0) + 26Al(0)
(
1− e−t/τ

)
⇒

26Mg(now)
24Mg(now)

=
26Mg(0)
24Mg(0)

+
27Al(now)
24Mg(now)

26Al(0)
27Al(0)

(
1− e−t/τ

)
where the LHS is often written δ26Mg, and we have used the fact that 24Mg is stable and hence
24Mg(now) =24Mg(0); likewise 27Al. The “now” ratios are easily measured, and the primordial
Al ratio is a constant, so if we have a rock sample we can measure the time between the Solar
System’s formation and the formation of the rock (assuming no transfer of material since).

2 Detection

2.1 Keplerian Orbits

Consider two bodies of masses M1 and M2. Their accelerations are

r̈1 =
GM2

|r2 − r1|3
(r2 − r1) r̈2 =

GM1

|r2 − r1|3
(r1 − r2)

Changing to the variables r = r2 − r1 and R = (M1r1 +M2r2)/(M1 +M2), we obtain

r̈ = −G(M1 +M2)

r3
r R̈ = 0

so the displacement vector obeys an inverse-square law and the centre of mass coasts at constant
velocity. The vector h ≡ r× ṙ is a constant, as ḣ = ṙ× ṙ+ r× r̈ = 0. As such the trajectory
of r (and hence those of r1 and r2) is confined to a plane. We prescribe in this plane the polar
coordinates r and θ, where r = rêr and so ṙ = ṙêr + rθ̇êθ; hence h = r2θ̇ is conserved. The
rate at which an orbit sweeps out area, 1

2
r2θ̇ ≡ h/2 is therefore constant (K2L).

The relative acceleration in these coordinates is

r̈ =
(
r̈ − rθ̇2

)
êr +

(
2ṙθ̇ + rθ̈

)
êθ

We must therefore have r̈ − h2/r3 = −G(M1 +M2)/r
2. This is solved via the substitution

u = 1/r, following which one can find an expression for r(θ):

r(θ) =
h2

G(M1 +M2)

1

1 + e cos θ
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where e is an integration constant, and we have fixed a second integration constant so that
θ = 0 corresponds to periapsis; then θ is called the true anomaly. Substituting for x and y
shows these curves to be conic sections; for 0 ≤ e < 1 they are ellipses of eccentricity e. Further
investigation shows these to have semi-axes given by

a =
1

1− e2
h2

G(M1 +M2)
, b = a

√
1− e2 ⇒ r(θ) =

a(1− e2)

1 + e cos θ

The area of an ellipse is πab, so the period can be found using the area sweeping rate:

P =
πab

h/2
=

2πa2
√
1− e2

h
=

2πa3/2√
G(M1 +M2)

M1≫M2−−−−−→ 2πa3√
GM1

and thus P ∝ a3/2 (K3L).

2.1.1 Projection

These orbits are observed projected on the sky plane: whereas the coordinates of the orbit may
be expressed in terms of (x, y, z) = (r cos θ, r sin θ, 0) in the orbital plane, the projection on the
sky plane is best expressed in different coordinates (X, Y, Z), where the XY -plane is the sky
plane and the Z-direction is towards Earth. Projecting an orbit requires 3 angles9:

• The inclination angle i is the angle between the orbital plane and the sky plane.

• The argument of periapsis ω swings the ellipse around in the orbital plane; ω has no
effect on a circular orbit.

• The longitude of the ascending node Ω gyrates the ellipse around in the sky plane. Ω does
not affect the Z-coordinate, and only adds a phase in the XY -plane. It is thus dependent
on our (arbitrary) choice of coordinates for the sky plane; we choose to set Ω = π.

Applying this projection to the (x, y, z) coordinates, one finds in terms of r(t) and θ(t):

X(t) = −r cos(θ + ω) Y (t) = −r sin(θ + ω) cos i Z(t) = r sin(θ + ω) sin i

2.2 Radial Velocity

The radial velocity method detects the presence of a planet around a star through the star’s
radial velocity, which Doppler shifts the star’s spectral lines. A photon emitted at wavelength
λ0 from a body moving at radial velocity vr will be measured at rest to have wavelength

λ = λ0

(
1 +

vr
c

)
⇒ ∆λ

λ0

=
vr
c

where we have neglected general relativistic effects and terms of order v2/c2. Identifying body
1 in the above as the star (mass M∗) and body 2 as the planet (M), the radial velocity of the
star is given by vr ≡ ṙ1 · êZ . In terms of R and r,

ṙ1 = Ṙ− M

M∗ +M
ṙ ⇒ ṙ1 · êZ = V − M

M∗ +M
Ż

9See https://orbitalmechanics.info for a nice visualisation.
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where V is the (constant) radial velocity of the centre of mass, and Z(t) was given above.
Differentiating r(θ) with respect to time one finds ṙ = e sin θrθ̇/(1 + e cos θ). Thus

Ż =
[
ṙ sin(θ + ω) + rθ̇ cos(θ + ω)

]
sin i = rθ̇︸︷︷︸

h/r

[
e sin θ sin(θ + ω)

1 + e cos θ
+ cos(θ + ω)

]
sin i

= h
1 + e cos θ

a(1− e2)

[
e sin θ sin(θ + ω)

1 + e cos θ
+ cos(θ + ω)

]
sin i

=
h

a(1− e2)
[e sin θ sin(θ + ω) + e cos θ cos(θ + ω)︸ ︷︷ ︸

e cosω

+cos(θ + ω)] sin i

=
2π

P

a√
1− e2

[e cosω + cos(θ + ω)] sin i

So finally, the total radial velocity as a function of θ is

vr = V − M

M∗ +M

2π

P

a sin i√
1− e2

[e cosω + cos(θ + ω)]
M≪M∗,e≪1−−−−−−−→ V − M sin i

M∗

2πa

P
cos (θ + ω)

where we have taken a common limit. The radial velocity will then oscillate sinusoidally in θ
about V . The oscillation of the radial velocity in time is quasi-sinusoidal but generally has no
closed-form solution; one can however easily fit e, ω, and P (hence a) to a library of compiled
profiles10. In practice, the Earth’s motion around the Sun adds a 1-year modulation, which
must be corrected by a “barycentric correction”.

The radial velocity amplitude, K, is the quantity normally given, and can be simplified:

K =
M sin i

M∗

2πa

P
√
1− e2

= M

(
2πG

M2
∗P

)1/3
sin i√
1− e2

= 28.44ms−1

(
M

MJ

)(
M∗

M⊙

)−2/3(
P

1yr

)−1/3
sin i√
1− e2

The amplitude of the oscillation is then proportional to M sin i. It is thus impossible to
disentangle M and sin i from RV measurements alone; planetary masses are often quoted as
M sin i. This is not as bad an assumption as it might seem; spherical geometry gives the
probability that the system is inclined at an angle between i and i + di as simply sin i di

(i ∈ [0, π/2]), so the mean value of sin i is then ⟨sin i⟩ =
∫ π/2

0
sin i sin i di = π/4 ≈ 0.79, so

M sin i will actually be a decent approximation of M (by astronomers’ standards...).

2.2.1 Stellar Noise

Aside from any noise emerging from the instruments, the star may further upset the measure-
ments. Rotation of the star will mean that the star’s spectral lines already have a distribution
of initial redshifts depending on where in the stellar disk each photon is emitted from. Further,
the atmospheres of cool stars are convective, so parcels of gas will be moving inwards and
outwards in the star at significant velocity, potentially adding further shifts.

10See https://astro.unl.edu/naap/esp/animations/radialVelocitySimulator.html to play around.
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2.3 Transits

Recall that in (X, Y, Z) coordinates:

X(t) = −r cos(θ + ω) Y (t) = −r sin(θ + ω) cos i Z(t) = r sin(θ + ω) sin i

where we see that the earlier choice Ω = π orients the XY part of orbit as an ellipse (if e = 0)
aligned with the X and Y axes, with semi-axes r and r cos i. If i is close to π/2, then (X, Y )
can get pretty close to (0, 0) – that is, r will be almost completely radial (Z-direction) and the
planet and star will be aligned with our line of sight: a transit occurs.

2.3.1 Impact Parameter

The closest that (X, Y ) gets to (0, 0) will be approximately11 when X = 0, i.e. when θ =
π/2−ω; an occultation will occur roughly π later when θ = 3π/2−ω. At the point of transit,

r =
a(1− e2)

1 + e cos (π/2− ω)
=

a(1− e2)

1 + e sinω
⇒ Y = −a(1− e2) cos i

1 + e sinω

The dimensionless impact parameter 12 b is the number of stellar radii by which the planet
misses the centre of the stellar disk in transit:

b ≡
Y(X=0)

R∗
=

a

R∗

(1− e2) cos i

1 + e sinω

2.3.2 Transit Probability

Figure 1 | Transit Geometry. If the observer is within the shadow band of opening angle Θ(ω),
then they will see a transit.

Often we make an RV measurement (obtaining e and ω) and want to know how likely the
planet is to transit the star (i.e. that i allows a transit). Figure 1 shows that the opening angle

11This approximation only becomes remotely bad when the orbits are very very eccentric
12No idea why they call it this, it’s not really an impact parameter, not least because it’s dimensionless...
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Θ of the shadow band of the system depends on the ω from which you view the transit. It can
also be easily shown that this shadow angle is given by13

sinΘ =
R∗ +R

r(X=0)

=
R∗ +R

a
· 1 + e sinω

1− e2

Now if nothing is known about i then its probability distribution is sin i. Thus the probability
that a system with a known e and ω can transit is

P (transit|e, ω) =
∫ π/2

π/2−Θ

sin i di = sinΘ =
R∗ +R

a
· 1 + e sinω

1− e2

For a population of planets of known e, but a range of ω (which we would expect to be evenly
distributed over [0, 2π]), the fraction of them that would be expected to transit is

P (transit|e) =
∫ 2π

0

P (transit|e, ω)dω
2π

=
R∗ +R

a
· 1

1− e2

These probabilities pretty much just depend on R∗ and a, and are generally very small:

R∗

a
= 0.005

(
R∗

R⊙

)( a

1au

)
2.3.3 Timing

Figure 2 | Transit Contact Times. This figure
defines the transit times tI-IV, the im-
pact parameter b, and the quantity δ.

As R∗ ≫ R, the planet’s path across the stel-
lar disk can be approximated as a straight line
between X = ±R∗

√
1− b2, with Y being a

constant at −bR∗. Four important times, la-
belled I through IV, are illustrated in Figure
2. Generally, to calculate the duration of in-
gress/egress τ and the transit duration T we
would need to calculate the values of θI-IV and
integrate θ̇ = r2/h over this range. Assum-
ing a circular orbit for simplicity, the angular
velocity of the planet is 2π/P , and the angle
between ingress and egress is approximately
2R∗

√
1− b2/a. Thus

T ≈
√
1− b2

R∗P

πa

We see that T ∝ R∗P/a. Recall from K3L

that P ∝ M
−1/2
∗ a3/2 ⇒ a ∝ M

1/3
∗ P 2/3, so

T ∝ R∗M
−1/3P 1/3 ∝ P 1/3ρ

−1/3
∗ . So weirdly,

the stellar density can be measured with T .
At the same angular speed, we therefore have

2R∗
√
1− b2/a

T
=

2R/a

τ
⇒ τ =

R

R∗
√
1− b2

T =
RP

πa

13Here we are talking about a grazing transit; for a full transit, simply replace R∗ +R with R∗ −R. In most
cases R∗ ≫ R so it doesn’t matter much. For occultations, replace sinω with − sinω.
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A detailed calculation (with generally eccentric orbits) gives that the occultation occurs

∆t ≈ 1

2
P

(
1 +

4

π
e cosω

)
after the transit. We can then measure e cosω, which is often given as an estimate of the
eccentricity, in the absence of other information.

2.3.4 Light Curves & Transit Spectra

The flux F we receive and measure at Earth from a body are related to the flux f emitted by
the body14, the area of the emitter, the distance to Earth D, and the area of the detector:

F = f · Aemitter︸ ︷︷ ︸
total luminosity emitted

· Adetector

4πD2︸ ︷︷ ︸
fraction of luminosity detected

· 1

Adetector︸ ︷︷ ︸
per unit area

= f
Aem

4πD2

The factor of 4πD2 will often cancel when we take Fp/F∗, as the Ds are almost the same.
When the planet and the star are both in full view, the flux received will be F∗(t) + Fp(t).

When the planet transits the star, it will block a fraction δ ≈ R2/R2
∗ of the star’s flux. There

will be corrections to this at various points in the transit due to several effects:

• During ingress/egress, not all of the planet will be blocking the star

• The atmosphere of the planet will preferentially absorb at certain wavelengths, giving R
a slight “fuzziness”. The transit depth therefore becomes

(R +NH)2

R2
∗

≈ R2

R2
∗
+

2NRH

R2
∗

where the atmospheric scale height H = kT/µg with mean molecular weight µ, and N
is typically a few, depending on the wavelength. This correction is very small (∼ 10−4),
though is larger for hotter planets with inflated atmospheres and large H.

• The outer edges of the stellar disk are darker and redder than the centre, because one sees
to a shallower depth into the star when looking at the edges of the disk (this is known as
limb darkening). As such, the planet may be barely blocking any blue light at all until
it reaches near the centre of the disk; conversely the planet is likely blocking IR light all
the way across the disk, so transits look sharp in IR but smoother in blue.

During occultation, the flux received drops by Fp. The occultation depth is given by
Fp/(F∗ + Fp) ≈ Fp/F∗. The form of this will depend on how exactly the planet is emitting its
flux. If it is emitting as a blackbody, it will have fp,λ ≈ 4πR2Bλ(T ), and we will have

δo,λ =
R2

R2
∗

Bλ(T )

Bλ(T∗)

λ≫hc/kT∗−−−−−−→ R2

R2
∗

T

T∗

If the planet’s emission is mostly reflected starlight, with albedo A, it will have a luminosity

L = A πR2

4πa2
L∗ = A

(
R

2a

)2

⇒ δo =
L

L∗
= A

(
R

2a

)2

14This is often written as I in the notes, despite being a flux. Back in §1.1.1 I noted that the notes sometimes
conversely label intensity as F , so that’s great. I guess they don’t give Nobel prizes for good notation.
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2.3.5 Rossiter-McLaughlin Effect

Transits can affect RV measurements. If the star is rotating, the radial velocity (and hence
redshift) will vary across the star. When the planet blocks the bluer part of the star, the star
will appear redder (on average!) and the spectral lines will get thinner and slump redwards
as the bluer parts of the line are blocked; and vice versa when the planet transits the redder
part of the star. This manifests in a peak and a trough in an RV profile, which may have
different heights if the stellar rotation axis is misaligned with the orbital plane. Apparently
the amplitude of the Rossiter-McLaughlin effect is given by

∆vRM ≈ 0.7

(
R

R∗

)2√
1− b2v∗ sin i∗

where i∗ is the inclination of the stellar rotation axis. It turns out many stars’ rotational
angular momentum is not parallel to the orbital angular momentum of their planets: the Sun
rotates at 7◦ to the ecliptic; some stars rotate at much higher inclinations.

3 Useful Numbers and Comparisons

M⊙ = 1.99× 1030kg M⊙ = 1050MJ MJ = 318ME

R⊙ = 6.96× 108m R⊙ = 10RJ RJ = 11RE

1au = 1.5× 1011km = 215R⊙

K = 28.44ms−1

(
M

MJ

)(
P

1yr

)−1/3(
M∗

M⊙

)−2/3
sin i√
1− e2

(i.e. a Jupiter-mass planet at 1au from a solar-mass star, with ideal inclination and eccentricity,
would give a radial velocity amplitude of 28.44ms−1.)
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