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1 Fundamentals

1.1 Fluids, generally

To treat a system as a fluid (rather than a kinetic system), we require that the mean free path
of the particles is much smaller than the system’s scale: L ≫ λ. (The mean free path can
also be written λ = 1/nσ.) Equivalently, dividing through by the average relative speed v̄, we
require that the timescale over which the system changes is much greater than the collision
timescale: L/v̄ ≫ τ ≡ λ/v̄. As a result, particles share out their velocity very effectively with
nearby particles, giving very similar bulk velocities u on small scales. This leads to the concept
of fluid elements: parcels of fluid small enough that all fluid variables are spatially constant
throughout the parcel.

We distinguish between two time derivatives:

• Eulerian ∂q
∂t
: The change over time in a quantity q at a particular point in space x.

From one moment to the next, one fluid element moves away from x and is replaced by a
new fluid element, which may have a different value of q than the original fluid element
had when it was at x.

• Lagrangian Dq
Dt
: The change over time in a quantity q for a particular (moving!) fluid

element. Rather than defining q for all the fluid elements (which would be weird as they
are moving), it is simpler to define q as a function of position and time q = q(x, t). Thus
as a fluid element moves from x to x + δx in a time δt, its value of q will change both
due to the time-dependence of q(x, t), and by virtue of moving to a different point. The
fluid element’s value will change by

∆q = q(x+ uδt, t+ δt)− q(x, t) = q(x, t) + uδt · ∇q + δt
∂q

∂t
+O(δt2)− q(x, t)

= δt

(
∂q

∂t
+ u · ∇q +O(δt)

)
⇒ Dq

Dt
≡ lim

δt→0

∆q

δt
=
∂q

∂t
+ u · ∇q

We will make several simplifying assumptions to all subsequent analysis:

• Ideal: Fluids are adiabatic (so p ∝ ργ), and inviscid. Heat flows are important in AFD,
but are complicated. Viscosity is important in shocks (see §5.3), but we will sidestep it.

• Perfect: p is related to ρ and T by p = k
µ
ρT , for mean molecular weight µ ∼ 10−24g.

• Perfectly Conducting: The conductivity σ → ∞. (The fluid is often a plasma.)

• Non-relativistic: |u| ≪ c
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1.2 Hydrodynamics

1.2.1 Mass Conservation

Consider an arbitrary fixed (Eulerian) volume V ; the mass contained within isM =
∫
V
ρ dV ⇒

∂M
∂t

=
∫
V
∂ρ
∂t
dV . The mass flux (mass per area per time) at any given point is ρu, so

∂M

∂t
= −

∮
∂V

ρu · dS = −
∫
V

∇ · (ρu) dV ⇒
∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0

Now because V is arbitrary, it can be infinitesimal; dividing by this volume:

∂ρ

∂t
+∇ · (ρu) = 0 ⇒ Dρ

Dt
= −ρ∇ · u (C)

– The Continuity Equation C. Note that incompressible fluids have Dρ
Dt

≡ 0 ⇒ ∇ · u = 0

1.2.2 Thermodynamics

An adiabatic fluid has p = Kργ, where K and γ are global constants. γ > 1 is given by
cp/cV = ∂s/∂T

∣∣
p
/ ∂s/∂T

∣∣
V
, or alternatively by 1+1/n for polytropic index n = f/2, where

f is the number of degrees of freedom (e.g. 3 for a monatomic gas; 5 for a diatomic).

The entropy per unit mass is generally s = cV ln
(
pρ−γ

)
. For an adiabatic fluid, the con-

stant K is then given by es/cV .

The sound speed cs is given by c2s ≡ ∂p/∂ρ |s . For an adiabatic fluid, c2s = γp/ρ.

We can use adiabaticity and p = p(ρ, s) to get the so-called Energy Equation E, an equation
for the evolution of p:

Dp

Dt
=
∂p

∂ρ

∣∣∣∣
s

Dρ

Dt
+
∂p

∂s

∣∣∣∣
p

Ds

Dt︸︷︷︸
0

= − ∂p

∂ρ

∣∣∣∣
s

ρ∇·u = −γp∇·u ⇒ ∂p

∂t
+ u · ∇p+ γp∇ · u = 0

(E)1.2.3 Momentum Equation

Consider a (Lagrangian) fluid element, with mass ρ dV ; the acceleration of the element is Du
Dt
.

N2L gives

ρ dV
Du

Dt
= dF ⇒

∫
V

ρ
Du

Dt
dV =

∫
V

dF ≡ F ≡ Fp + Fg + FB

where we have split the force into pressure, gravitational, and magnetic parts.

Fp =

∮
∂V

−p dS = −
∫
V

∇p dV Fg =

∫
V

−ρ∇ΦdV FB =

∫
V

fB dV

⇒
∫
V

(
ρ
Du

Dt
+∇p+ ρ∇Φ− fB

)
dV = 0 ⇒ ρ

Du

Dt
= −∇p− ρ∇Φ + fB

where fB is the magnetic force per unit volume, deduced in the next section.
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1.3 Magnetohydrodynamics

1.3.1 Maxwell’s Equations in AFD

In cgs units (used throughout), three of Maxwell’s Equations are:

∇ ·B = 0 ∇× E = −1

c

∂B

∂t
∇×B =

4π

c
J+

1

c

∂E

∂t

We also have Ohm’s law, J = σE, where σ is the conductivity of the material the fluid is
made of. We would measure this by subjecting a tank of the fluid in a lab to an E field and
measuring J; if the fluid is moving we would do that while running along with it: J′ ≡ σE′ is
the definition of σ, where prime means in the rest frame of the fluid at velocity u. However, we
approximate our fluid to be made of a perfectly conducting material (e.g. plasma), so σ → ∞.
To ensure that none of the fields become infinite, we thus require E′ = 0. There is nothing
wrong with E fields in general, but they cannot exist in the fluid’s rest frame, as the infinitely
large currents would move charges around until the E′ field gets cancelled out. What do we
get out of this? In a frame not comoving with the fluid, the Lorentz transform gives

E′ ≡ γ
(
E+

u

c
×B

)
= 0 ⇒ E = −u×B

c
⇒ |E| = |u|

c
|B| ≪ |B|

Note that in cgs, [E] = [B] dimensionally. From this, the 2nd Maxwell equation above gives:

∂B

∂t
= −c∇×

(
−u×B

c

)
⇒ ∂B

∂t
= ∇× (u×B) (F)

Consider a surface S which moves with the fluid (by a vector u dt in a time dt); consider the
flux Ψ =

∫
S B ·dS. The (Lagrangian) derivative of this flux will be due to two factors: changes

in the B field itself, and changes in the surface as it moves. The change in the former is simply∫
S
∂B
∂t

dt · dS; the second uses the fact that the differential change of the surface is − dℓ×u dt,
so the change in flux due to this is −

∮
∂S B · (dℓ× u dt). Thus

DΨ

Dt
=

∫
S

∂B

∂t
· dS−

∮
∂S

B · (dℓ× u) =

∫
S
∇× (u×B) · dS+

∮
∂S

(B× u) · dℓ

=

∮
∂S

(u×B+B× u) · dℓ = 0

Hence F is called the flux freezing equation. A more rigorous definition is given on Wikipedia.
Now consider the final Maxwell equations above; comparing the magnitudes of two terms:∣∣1

c
∂E
∂t

∣∣
|∇×B|

∼
1
c
|E|/τ
|B|/ℓ

∼ ℓ/τ

c

|E|
|B|

∼ |u|
c

|u|
c

∼ |u|2

c2
≪ 1 ⇒ ∇×B =

4π

c
J

1.3.2 Lorentz Force

In cgs units, the Lorentz force is given by 1
c
qiui×B for a single charge; notably ⊥ B. Summing

over all charges in a fluid element and dividing by the volume, we have that the magnetic force
per volume fB = 1

c
J×B = 1

4π
(∇×B)×B. Thus the full momentum equation is:

ρ
Du

Dt
= −∇p− ρ∇Φ +

1

4π
(∇×B)×B (M)
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fB can be broken down into two terms, using (∇×B)×B ≡ (B · ∇)B−∇
(
1

2
B2

)
.

We have a magnetic tension force/volume 1
4π
(B · ∇)B: wherever the B lines are curved, this

force acts towards the centre of curvature, and because flux freezing “ties” the B field to
the fluid, the tension force encourages the field lines to straighten. There is also a term
∇(B2/8π); being a force/volume and a gradient, this is like a pressure pB = B2/8π, described
as the magnetic pressure; it is also interpretable as the gradient of the magnetic energy density
B2/8π. The beta of a plasma β ≡ p/pB = 8πp/B2 quantifies the relative importances of gas
and magnetic pressure: β ≫ 1 means magnetic pressure is unimportant.

2 Conservation Laws
∂q

∂t
+∇ · Fq = 0

The above expression describes a flux density Fq of the quantity q. We wish, for a given
quantity q, to find the flux density Fq. For example, C gives the flux density of ρ as simply ρu.

A material invariant is a quantity which is constant for a given fluid element as it moves:
Dq
Dt

= 0; an example is s. Expanding the derivative, multiplying by ρ, and adding q × C,

ρ
∂q

∂t
+ ρu · ∇q + q

∂ρ

∂t
+ q∇ · (ρu) = 0 ⇒ ∂(ρq)

∂t
+∇ · (ρqu) = 0

so for every material invariant q, there is a quantity ρq with flux density ρqu.

2.1 Momentum Density Flux

The momentum density is ρu, a vector. Its flux density, Π, is therefore a rank-2 tensor:

∂(ρu)

∂t
+∇ ·Π = 0 ⇐⇒ ∂(ρui)

∂t
+ ∂jΠij = 0

Firstly, note that due to C,

∂(ρui)

∂t
= ρ

∂ui
∂t

− ui∂j(ρuj) = ρ
Dui
Dt

− ∂j(ρuiuj) ⇒ ρ
Dui
Dt

= ∂j(ρuiuj − Πij) ≡ ∂jT ij

where T ≡ ρu⊗ u−Π is the stress tensor ; it is not a flux tensor as Π is designed to be, but
it is purely due to the external forces (p, Φ, B) on the fluid, unlike Π which would also need
a ram pressure term ρuiuj. Now comparing the above equation for ρDui

Dt
with the momentum

equation, we identify
∇ ·T = −∇p− ρ∇Φ +

1

4π
(∇×B)×B

Before proceeding to derive the components T ij from the above, we establish a useful lemma
for divergences of a tensor. For a general vector A = Ai and the tensor A⊗A = AiAj:

∇ ·
(
A⊗A− 1

2
|A|2δ

)
= (∇ ·A)A+ (∇×A)×A

where δ = δij. This can be derived from the expansion of (∇×A)×A given earlier.
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Now if Φ is externally imposed (e.g. we’re near a big mass), it turns out that there is no
general way to write ρ∇Φ as the divergence of a tensor. However if the fluid is self-gravitating
(∇2Φ = 4πGρ), there is; we therefore consider only self-gravitating fluids here. Defining
g ≡ −∇Φ, we have ∇ · g = −4πGρ and ∇× g = 0. Thus

ρ∇Φ =
1

4πG
(∇ · g)g =

1

4πG
∇ ·

(
g ⊗ g − |g|2

2
δ

)
≡ ∇ ·G

Similarly, using ∇ ·B = 0, we derive the Maxwell stress tensor

1

4π
(∇×B)×B =

1

4π
∇ ·

(
B⊗B− |B|2

2
δ

)
≡ ∇ ·M

Finally, ∇p = ∇ · (pδ). Comparing with the expression for ∇ · T , we then have

T = −pδ −G+M, Gij =
1

4πG

(
gigj −

1

2
gkgkδij

)
, Mij =

1

4π

(
BiBj −

1

2
BkBkδij

)
Π = ρu⊗ u−T = ρu⊗ u+ pδ +G−M

⇒ Πij = ρuiuj + pδij +
1

4πG

(
gigj −

1

2
gkgkδij

)
− 1

4π

(
BiBj −

1

2
BkBkδij

)

2.2 Energy Flux

We now find the flux of the energy density ϵ = ρ
(
1
2
|u|2 + Φ+ e

)
+ |B|2/8π, where the thermal

energy per unit mass e = f 1
2
kT
µ

= 1
γ−1

p
ρ
according to equipartition. We now allow Φ to be

externally imposed. Now

∂ϵ

∂t
=
∂ρ

∂t

(
1

2
|u|2 + Φ+ e

)
+ ρ

(
u · ∂u

∂t
+
∂Φ

∂t
+
∂e

∂t

)
+

1

4π
B · ∂B

∂t

We now substitute:

∂ρ

∂t
= −∇ · (ρu) ρ

∂u

∂t
= −ρ(u · ∇)u−∇p− ρ∇Φ +

1

4π
(∇×B)×B

u · [(u · ∇)u] =
1

2
(u · ∇)

(
|u|2
)

u · (∇×B)×B = (∇×B) · (B× u) = c(∇×B) ·E

to give:

∂ϵ

∂t
= −∇ · (ρu)

(
1

2
|u|2 + Φ+ e

)
− (ρu · ∇)

(
1

2
|u|2 + Φ

)
− u · ∇p

+
c

4π
(∇×B) · E+ ρ

∂Φ

∂t
+ ρ

∂e

∂t
+

1

4π
B · ∂B

∂t

Now consider ∂e/∂t . Applying 2LT per unit mass to a fluid element, we have

De

Dt
= T

Ds

Dt
− p

D(1/ρ)

Dt
= T

Ds

Dt
+

p

ρ2
Dρ

Dt
⇒ ∂e

∂t
= −u · ∇e+ T

Ds

Dt
− p

ρ
∇ · u
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We also have ∂B/∂t = −c∇×E, and ∇· (E×B) = B · (∇× E)−E · (∇×B). Substituting,

∂ϵ

∂t
= −∇ · (ρu)

(
1

2
|u|2 + Φ+ e

)
− (ρu · ∇)

(
1

2
|u|2 + Φ

)
− u · ∇p− p∇ · u− ρu · ∇e

− c

4π
∇ · (E×B) + ρT

Ds

Dt
+ ρ

∂Φ

∂t

= −∇ ·
[
ρu

(
1

2
|u|2 + Φ+ e

)
+

c

4π
E×B

]
−∇ · (pu) + ρT

Ds

Dt
+ ρ

∂Φ

∂t

= −∇ ·
[
ρu

(
1

2
|u|2 + Φ+ e+

p

ρ

)
+

c

4π
E×B

]
+ ρT

Ds

Dt
+ ρ

∂Φ

∂t

Thus for an adiabatic fluid in a time-independent potential, the energy flux is given by

Fϵ = ρu

(
1

2
|u|2 + Φ+ e+

p

ρ

)
+

c

4π
E×B ⇒ ∂ϵ

∂t
+∇ · Fϵ = 0

The terms in the flux are easily recognisable as the fluxes of kinetic energy, potential energy,
enthalpy h = e+ p

ρ
= γ

γ−1
p
ρ
, and the cgs Poynting vector (the flux of electromagnetic energy).

For steady-state systems with B = 0, C gives ∇· (ρu) = 0, and so the above equation gives

∇ ·
[
ρu

(
1

2
|u|2 + Φ+ h

)]
= 0 ⇒ u · ∇

(
1

2
|u|2 + Φ+ h

)
︸ ︷︷ ︸

b

= 0

Thus the quantity b, the Bernoulli constant, is conserved along a streamline1.

3 Spherical Accretion

Accretion involves stationary gas of density ρ0 falling onto a gravitating centre at r = 0.
We will neglect B fields, assume spherical symmetry, adiabaticity, and a Keplerian potential
Φ = −GM/r. We will seek steady-state solutions: ∂/∂t = 0. C gives:

1

r2
d

dr

(
r2ρu

)
= 0 ⇒ r2ρu = const.

Therefore the accretion rate Ṁ ≡ −4πr2ρu is a constant. Differentiating,

2rρu+r2
dρ

dr
u+r2ρ

du

dr
= 0 ⇒ dρ

dr
= −ρ

(
2

r
+

1

u

du

dr

)
⇒ dp

dr
= −ρc2s

(
2

r
+

1

u

du

dr

)
M gives:

ρu
du

dr
= −ρdΦ

dr
− dp

dr
= −ρdΦ

dr
+ ρc2s

(
2

r
+

1

u

du

dr

)
⇒

(
u2 − c2s

)du
dr

= u

(
2c2s
r

− dΦ

dr

)
We are most interested in transonic flows, which go from subsonic to supersonic. It will
therefore be important to find the sonic point rs, at which u = css, where css is the sound
speed at rs. From the above, this requires

2c2ss
rs

=
dΦ

dr

∣∣∣∣
rs

⇒ c2ss =
GM

2rs

1Note that fluid elements on different paths will in general have different b.
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Conservation of energy gives:
1

r2
d

dr

(
r2ρu

(
1

2
u2 + Φ+ h

))
= 0 ⇒ b =

1

2
u2 − GM

r
+

γ

γ − 1

p

ρ
= const.

where we have used r2ρu = const., and identified the Bernoulli constant b; indeed we have
a steady-state non-magnetic system so such a constant exists. In fact, because all radial
streamlines are equivalent by spherical symmetry, b is a global constant. At the sonic point,

b =
1

2
c2ss −

GM

rs
+

1

γ − 1
c2ss =

5− 3γ

2(γ − 1)
c2ss =

5− 3γ

4(γ − 1)

GM

rs

3.1 Bondi Accretion

Suppose as r → ∞, u → 0, ρ → ρ0, and cs → cs0 =
√
γKργ−1

0 , therefore b = c2s0/(γ − 1).

We wish to derive the accretion rate Ṁ = −4πr2ρu, and although it is a constant, clearly
evaluating it at r = ∞ is not a way forward. The only other special points in the problem are
r = 0 (also not helpful) and r = rs where u = −css; we can therefore write Ṁ = 4πr2sρscss.
Now css can be related to cs0 (and hence ρs to ρ0) via b:

c2s0
γ − 1

= b =
5− 3γ

2(γ − 1)
c2ss ⇒ c2ss =

2

5− 3γ
c2s0 ⇒ ρs =

(
2

5− 3γ

) 1
γ−1

ρ0

Finally, rs is related to css via c
2
ss = GM/2rs, and css is related to cs0 as above. Thus:

r2s =

(
GM

2c2ss

)2

=

(
5− 3γ

2

)2(
GM

2c2s0

)2

⇒ Ṁ = 4π

[(
5− 3γ

2

)2(
GM

2c2s0

)2
][(

2

5− 3γ

) 1
γ−1

ρ0

][(
2

5− 3γ

)1/2

cs0

]

= πρ0cs0

(
GM

c2s0︸︷︷︸
RB

)2(
5− 3γ

2

)− 5−3γ
2(γ−1)

︸ ︷︷ ︸
f(γ)

= f(γ)πR2
Bρ0cs0

We have defined the Bondi radius RB as it forms an effective cross-section πR2
B for the accretion.

At this radius, the potential energy GM/RB = c2s0 is of the same order as the thermal energy.
For r ≲ RB the gravity of the central object qualitatively dominates over gas pressure.

The function f(γ) has interesting limits, found by allowing f(γ) = limϵ→0 f(γ− ϵ): we find

f(1) = limϵ→0

(
1 + 3ϵ

2

)1/ϵ
= e3/2 and f

(
5
3

)
= limϵ→0

(
ϵ
2

)−9ϵ/4
= 1

3.1.1 Bondi-Littlewood Accretion

We now generalise to the case where the mass M is moving relative to the stationary gas at
a speed V . We first modify the length scale RB to RBL, to account for the fact that gravity
must overcome both thermal and kinetic energy in order for accretion to occur:

GM

RBL

∼ c2s0 + V 2 ⇒ RBL ∼ GM

c2s0 + V 2
⇒ Ṁ ∼ π

(
GM

c2s0 + V 2

)2

ρ0
√
c2s0 + V 2

For V ≪ cs0, this naturally tends to the previous result with V = 0. For V ≫ cs0, the accretion
rate is reduced by a factor (V/cs0)

3, as the central object ploughs through the medium without
much chance for gas to fall in.
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4 Axisymmetric MHD

We now look for steady-state solutions to the fluid equations which are also axisymmetric:
∂/∂t = ∂/∂ϕ = 0; we will work in cylindrical coordinates (R, ϕ, z). It will be useful to
consider vector fields as the sum of toroidal (like lines of latitude, parallel to êϕ) and poloidal
(within planes through the axis) components. For example,

B = Bp(R, z) +Bϕ(R, z)êϕ u = up(R, z) + uϕ(R, z)êϕ

With no ϕ dependence, a magnetic field line forms a surface of revolution around the z axis –
a magnetic surface. The intersection between this surface and any horizontal plane will be a
horizontal circle. It will be convenient to define the quantity ψ as the magnetic flux through
this horizontal circle:

ψ(R, z) ≡
∫
S
B · dS =

∫ R

0

2πR′Bz(R
′, z) dR′

We now emphasise the following statements, each of which are equivalent:

• Interior to a given magnetic surface and travelling upwards, the flux is conserved. This is
because there is never a component of B which is perpendicular to the magnetic surface
(by construction), so no flux can escape.

• ψ is the same for all points on a given same magnetic surface; ψ can therefore be used
to label the magnetic surfaces.

• Bp · ∇ψ = 0, as we will show now.

From its definition, we have Bz =
1

2πR
∂ψ
∂R

. Now ∇ ·B = 0 and ∂/∂ϕ = 0 impose ∇ ·Bp = 0:

0 =
1

R

∂

∂R
(RBR) +

∂Bz

∂z
=

1

R

∂

∂R
(RBR) +

1

2πR

∂2ψ

∂z∂R

=
1

R

∂

∂R

(
RBR +

1

2π

∂ψ

∂z

)
⇒ RBR +

1

2π

∂ψ

∂z
= C(z) ⇒ BR = − 1

2πR

∂ψ

∂z
+

C(z)

R︸ ︷︷ ︸
0⇒regular
on axis

⇒ BR = − 1

2πR

∂ψ

∂z
Bz =

1

2πR

∂ψ

∂R
. Now ∇ψ × êϕ =

∂ψ

∂R
êz −

∂ψ

∂z
êR

⇒ Bp =
1

2πR
∇ψ × êϕ

Thus ψ changes in a direction perpendicular to Bp and Bp · ∇ψ = 0.

4.1 Surface Functions

By integrating the fluid equations in steady state, one finds that several fields are surface
functions, of ψ alone.

Mass Loading k. Beginning with the flux-freezing equation F in steady state:

∇×(u×B) = 0 ⇒ up ×Bp︸ ︷︷ ︸
toroidal

+uϕêϕ ×Bp + up ×Bϕêϕ︸ ︷︷ ︸
poloidal

= ∇χ︸︷︷︸
pol.

⇒ up×Bp = 0
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where we have used ∇×∇ ≡ 0, introduced a scalar function2 χ, and noted that ∇χ is poloidal
with ∂/∂ϕ = 0. The result is that up ∥ Bp, therefore the fluid is stuck on the same magnetic
surface forever and cannot move off it. We write ρup = k(R, z)Bp where k is the mass loading,
the ratio of the mass flux to the magnetic flux. Substituting into C:

0 = ∇ · (ρup) = ∇ · (kBp) = 0 = Bp · ∇k + k∇ ·Bp = Bp · ∇k ⇒ Bp · ∇k = 0

Thus k is constant on a magnetic surface, and is hence a surface function k = k(ψ).
Angular Velocity ω. We now have u×B = êϕ× (uϕBp −Bϕup) = ∇χ. Taking the curl

and using the definition of k,

0 = ∇×
[
êϕ ×

(
uϕ −

Bϕk

ρ

)
Bp

]
= ∇×

[
êϕ ×

( ≡ω(R,z)︷ ︸︸ ︷
uϕ
R

− Bϕk

ρR

)∇ψ × êϕ
2π

]
∝ ∇× [êϕ × (ω∇ψ × êϕ)] = ∇× [ω∇ψ] = ∇ω ×∇ψ

⇒ ω(R, z) = ω(ψ) ≡ uϕ
R

− Bϕk

ρR

Allowing us to write the fluid velocity in a suggestive form:

⇒ u ≡ up + uϕêϕ =
k(ψ)

ρ
Bp +

k(ψ)

ρ
Bϕêϕ +Rω(ψ)êϕ =

k(ψ)

ρ
B+Rω(ψ)êϕ

Now if we choose the particular magnetic surface with flux ψ and move to a frame rotating
about the z-axis at ω(ψ), then in this frame the fluid velocity on this surface will be3

u′ =
k(ψ)

ρ
B

which is ∥ B, so in this frame the fluid elements move along the B field lines. In the rest frame,
if one imagines that the B field lines of a particular magnetic surface are wires being swung
around the axis at ω, then the fluid elements would move like beads on those wires.

For the case k = 0, corresponding to purely axisymmetric fluid flow (u = uϕêϕ, up = 0),
we see that uϕ = Rω(ψ). In other words, the fluid that is on the surface labelled ψ is “locked”
into uniform corotation at a rate ω(ψ). This is known as Ferraro’s isorotation law.

Angular Momentum ℓ(ψ). M has lots of gradient terms in it. If we take êϕ ·M, these
will disappear as êϕ · ∇ = ∂/∂ϕ = 0. We are left with:

ρêϕ · (u · ∇)u =
1

4π
êϕ · (B · ∇)B

Both sides are of the same form; we simplify the LHS using4 ∂êR/∂ϕ = êϕ and ∂êϕ/∂ϕ = −êR:

êϕ · (u · ∇)u = êϕ ·
(
uR

∂

∂R
+ uz

∂

∂z
+
uϕ
R

∂

∂ϕ

)
(uRêR + uzêz + uϕêϕ)

2u×B = −cE, so this scalar is in fact c times the electric potential
3B will also have a relativistic correction, but this will be O(ω2R2/c2), so the B field lines will look almost

the same as in the non-rotating frame.
4But isn’t ∂/∂ϕ = 0? For all physical quantities, yes. Here we are differentiating basis vectors, and it is

simply in their nature to vary with ϕ; this does not ruin the axisymmetry of the actual physical setup.
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=

(
uR

∂

∂R
+ uz

∂

∂z

)
uϕ +

uϕ
R
êϕ · (uRêϕ − uϕêR)

= up · ∇uϕ +
uRuϕ
R

=
1

R
up · ∇(Ruϕ)

The same steps can be taken with the RHS. Setting the two equal, we have:

ρ

R
up · ∇(Ruϕ) =

1

4πR
Bp · ∇(RBϕ) ⇒ kBp · ∇(Ruϕ) = Bp · ∇

(
RBϕ

4π

)

⇒ Bp·∇
(
kRuϕ −

RBϕ

4π︸ ︷︷ ︸
≡k(ψ)ℓ(R,z)

)
= 0 ⇒ Bp·∇ℓ = 0 ⇒ ℓ(R, z) = ℓ(ψ) ≡ Ruϕ−

RBϕ

4πk

where we have twice exploited the fact that k = k(ψ) and hence Bp ·∇k = 0. From the above
we see that the angular momentum integral has an extra term: Bϕ causes a magnetic torque.

Bernoulli Integral ε(ψ). Beginning with E,

0 =
∂ϵ

∂t
+∇ ·

[
ρu

(
1

2
u2 + Φ+ h

)
+

c

4π
E×B

]
= ∇ ·

[
ρup

(
1

2
u2 + Φ+ h

)
+

c

4π
[E×B]p

]
To calculate the poloidal component of the Poynting vector, note first that

E = −u×B

c
= −1

c

(
k

ρ
B+Rωêϕ

)
×B = −Rω

c
êϕ ×B

is poloidal. E×Bp will therefore be toroidal. The poloidal component of E×B is therefore

[E×B]p = [E×Bp]p︸ ︷︷ ︸
0

+E×Bϕêϕ = −Rω
c
Bϕ(êϕ ×B)× êϕ = −Rω

c
BϕBp

Substituting this and ρup = kBp, and noting that ∇ ·Bp = 0, we have

0 = ∇ ·
[(
k

(
1

2
u2 + Φ+ h

)
− Rω

4π
Bϕ

)
Bp

]
= Bp · ∇

[ ≡k(ψ)ε(R,z)︷ ︸︸ ︷
k

(
1

2
u2 + Φ+ h

)
− RωBϕ

4π

]

⇒ ε(R, z) = ε(ψ) ≡ 1

2
u2 + Φ+ h− RωBϕ

4πk

We see again that Bϕ imparts a correction to the intuitive form of the function.
Material Invariants. Finally, we will show that all material invariants are surface func-

tions, using s as an example. Starting from the definition of a material invariant and using
∂/∂t = ∂/∂ϕ = 0,

0 =
Ds

Dt
=

∂s

∂t︸︷︷︸
0

+u · ∇s = up · ∇s+ uϕ
∂s

∂ϕ︸︷︷︸
0

=
k

ρ
Bp · ∇s ⇒ Bp · ∇s = 0 ⇒ s = s(ψ)

The same applies to all material invariants, so they are all surface functions too.
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4.1.1 Magnetic Wind Launching

Consider the pair of functions:

ω(ψ) ≡ uϕ
R

− Bϕk

ρR
ℓ(ψ) ≡ Ruϕ −

RBϕ

4πk

Eliminating Bϕ between them:

Bϕ =
ρ

k
(uϕ −Rω) = 4πk

(
uϕ −

ℓ

R

)
⇒ uϕ −Rω =

4πk2

ρ

(
uϕ −

ℓ

R

)
The prefactor is the square of the poloidal Alfvén number 5 A, in terms of v2

Ap ≡ Bp/
√
4πρ:

A2 ≡
u2
p

v2
Ap

= u2
p

4πρ

B2
p

=
4πk2

ρ
⇒ uϕ −Rω = A2

(
uϕ −

ℓ

R

)
⇒ uϕ =

R2ω − A2ℓ

R(1− A2)

We see that for A≫ 1 (fast poloidal flow/weak Bp), uϕ ≈ ℓ/R and the flow preserves angular
momentum; if a fluid element moves to a region of the surface further away from the axis it will
slow down. This is intuitive because in the limit Bp → 0 the situation is simply hydrodynamic
and there is no Bp field to mess with the conservation of angular momentum. For A≪ 1 (slow
poloidal flow/strong Bp, or the k = 0 of Ferraro’s isorotation law above), uϕ ≈ Rω; if a fluid
element moves to a region of the surface further away from the axis it will speed up its uϕ to
keep the same ω. Each surface then isorotates.

In the transonic flow of §3, fluid goes from subsonic to supersonic, passing along a radial
path through a sonic point rs (the locus of sonic points on all radial paths forms a sonic
sphere) where u = cs. In trans-Alfvénic flow, fluid goes from sub-Alfvénic (up < vAp) to
super-Alfvénic (up > vAp), passing along a magnetic surface through an Alfvén point at axial
distance R = RA(ψ) (the locus of Alfvén points on a magnetic surface forms a horizontal
circle by axisymmetry; the locus of these circles on all magnetic surfaces forms an Alfvén
surface cutting through the magnetic surfaces) on which up = vAp. At an Alfvén point,

A = 1 ⇒ RA(ψ) =
√
ℓ(ψ)/ω(ψ).

Another surface function is ε′(ψ) ≡ ε(ψ)−ω(ψ)ℓ(ψ), the Jacobi Integral. This evaluates to:

ε′ =
1

2
u2 + Φ+ h−Rωuϕ =

1

2
u2
p +

1

2
(uϕ −Rω)2 + Φcg + h

where Φcg = Φ − 1
2
(Rω)2. Near the disk, the fluid is sub-Alfvénic (so uϕ ≈ Rω), and cold (so

h ≈ 0). Thus ε′(ψ) = 1
2
u2
p + Φcg near to the disk. To launch the fluid off the disk, it needs

to increase its up, to eventually reach vAp at the Alfvén surface. Thus it will have to lose
some Φcg. Taylor expanding about the point P = (R0, 0), assuming force balance at P and
symmetry in the z = 0 plane:

Φcg(R, z) ≈ Φcg(P ) +
1

2

∂2Φcg

∂R2

∣∣∣∣
P

(R−R0)
2 +

1

2

∂2Φcg

∂z2

∣∣∣∣
P

z2 = Φcg(P ) +
1

2
Ω2

0

(
z2 − 3(R−R0)

2
)

where we have substituted the Keplerian Φ(R, z) = −GM(R2 + z2)
−1/2

, and used Ω2
0 =

GM/R3
0. We see that P is a saddle point of the centrifugal potential, with separatrices at

gradients of ±
√
3 through P , an angle of π/3 from the disk. Therefore Φcg decreases (allowing

u2
p to increase while maintaining ε′) if the magnetic surface that the fluid is being launched on

makes an angle of less than π/3 with the disk; this is therefore the condition for a magnetic
wind to be launched.

5Note that this is not a surface function
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5 Waves

5.1 Linear Waves

Consider a static and uniform6 background state with ρ = ρ0 constant, similarly for u, p, B,
with u0 = 0 and neglecting gravity, in such a way that C,E, F and M are all satisfied. Now
consider small perturbations on this state, so that ρ(x, t) = ρ0 + δρ(x, t), and similarly for u,
p, B. To first order, C,E, F and M become respectively

∂δρ

∂t
= −ρ0∇ · δu ∂δp

∂t
= −γp0∇ · δu ∂δB

∂t
= ∇× (δu×B0)

ρ0
∂δu

∂t
= −∇δp+

1

4π
(B0 · ∇)δB− 1

4π
∇(B0 · δB)

recalling that B0 is a spatial constant. We now introduce the variable ξ, defined such that

δu ≡ ∂ξ/∂t . Now because ρ0 etc. are time-independent, we can simply integrate the first

three of the above over time:

δρ = −ρ0∇ · ξ δp = −γp0∇ · ξ δB = ∇× (ξ ×B0) = (B0 · ∇)ξ −B0(∇ · ξ)

Substituting these into the perturbed momentum equation,

ρ0
∂2ξ

∂t2
= γp0∇(∇ · ξ) + 1

4π

[
(B0 · ∇)((B0 · ∇)ξ −B0(∇ · ξ))

−∇
(
B0 · (B0 · ∇)ξ −B2

0(∇ · ξ)
)]

Consider a plane wave perturbation:

⇒ ξ = ξ̂ei(k·x−ωt) ⇒ ∇ → ik,
∂

∂t
→ −iω

⇒ −ρ0ω2ξ = −γp0k(k·ξ)−
1

4π

[
(B0 · k)((B0 · k)ξ −B0(k · ξ))− k

(
B0 · (B0 · k)ξ −B2

0(k · ξ)
)]

⇒

(
ρ0ω

2 − (B0 · k)2

4π

)
ξ =

[(
γp0 +

B2
0

4π

)
(k · ξ)− (B0 · ξ)(B0 · k)

4π

]
k− (B0 · k)(k · ξ)

4π
B0 (∗)

To obtain dispersion relations, we need to eliminate ξ. To do this, we construct two equations
in k · ξ and B0 · ξ, and eliminate. Taking the scalar product of (∗) with k and B0 respectively,(

ρ0ω
2 − (B0 · k)2

4π

)
(k · ξ) =

[(
γp0 +

B2
0

4π

)
(k · ξ)− (B0 · ξ)(B0 · k)

4π

]
k2 − (B0 · k)2(k · ξ)

4π

⇒
[
ρ0ω

2 −
(
γp0 +

B2
0

4π

)
k2

]
(k · ξ) + (B0 · k)k2

4π
(B0 · ξ) = 0

(
ρ0ω

2 − (B0 · k)2

4π

)
(B0 · ξ) =

[(
γp0 +

B2
0

4π

)
(k · ξ)− (B0 · ξ)(B0 · k)

4π

]
(B0 · k)

− (B0 · k)(k · ξ)
4π

B2
0

6Uniform but not necessarily isotropic due to B’s direction.
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⇒ −γp0(B0 · k)(k · ξ) + ρ0ω
2(B0 · ξ) = 0

⇒

([
ρ0ω

2 −
(
γp0 +

B2
0

4π

)
k2
]

(B0·k)k2

4π

−γp0(B0 · k) ρ0ω
2

)(
k · ξ
B0 · ξ

)
= 0

where we have expressed the two as a matrix equation. There are now two possibilities:

• k·ξ = B0 ·ξ = 0. These are transverse waves oscillating perpendicular to B. Substituting

into (∗) gives ω2 = (B0·k)2
4πρ

= (vA · k)2, where we have defined the Alfvén velocity :

vA ≡ B0√
4πρ0

This dispersion relation is independent of p; indeed δp = −γp0∇ · ξ = −iγp0k · ξ =
0, so the pressure is not perturbed. Furthermore, δB = (B0 · k)ξ ⇒ δB · B0 =
(B0 · k)(ξ ·B0) = 0 ⇒ δ(B2) = 0, so the magnetic pressure is also not perturbed.

The restoring force for this wave must therefore be the magnetic tension: the fluid os-
cillates perpendicular to the B0 lines, causing the B lines to bend into a wave shape;
magnetic tension then acts to snap the B lines straight, in the direction of the restoring
force required. The phase velocity and group velocity are respectively defined by:

vp =
ω

|k|
k̂ vg = ∇kω

so we have vp = ±|vA| cos (θ)k̂ and vg = ±vA, where θ is the angle between B0 and k.
As indicated by the dispersion relation, this means that when B0 ⊥ k, the wave does not
propagate. Also, whereas vp can be at an angle to the B0 field, vg ∥ B0, so the wave’s
energy transfer is along the B0 field lines.

• The matrix determinant is 0. This gives the following quadratic in ω2:

0 = ω4 −
(
c2s + v2

A

)
k2ω2 + c2s(vA · k)2k2

⇒ ω2 =
1

2

[
c2s + v2

A ±
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
k2

For the non-magnetic case B0 = vA = 0, we have ω2 = c2sk
2. Going back a bit to (∗),

we find in fact ρ0ω
2ξ = γp0k, so these waves are longitudinal. These are vanilla sound

waves, and can propagate isotropically.

Generally, the two solutions do not coincide and represent the fast and slow magnetosonic
waves : both p and B contribute to the restoring force.

The angular dependence of the phase velocities of the Alfvén and fast and slow magne-
tosonic waves is plotted in a Friedrichs-Spiderman diagram (see Figure 1), named after
the two individuals who inspired them. We see that fast magnetosonic waves propagate
almost isotropically, but that slow magnetosonic and Alfvén waves are strongly channelled
by the B field.
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Figure 1 | Friedrichs-Spiderman Diagrams. The speeds of the Alfvén, fast and slow magne-
tosonic waves are plotted as a function of angle. In the left diagram, cs > vA; in the right

cs < vA. In each diagram, the outer boundary is at
√
c2s + v2

A.

5.2 Nonlinear Waves

5.2.1 Simple Waves

We restrict our analysis of nonlinear waves to a 1D adiabatic fluid with no B field or gravity,
and an initial velocity field7 u0(x). We further specialise to the case of a simple wave, where
there is a 1-to-1 correspondence between velocity and density: ρ = ρ(u); u = u(ρ); the initial
density distribution ρ0(x) = ρ(u0(x)). Further, for an adiabatic gas, p = p(ρ) and c2s = γp/ρ
is also a function of ρ, so if any out of the set {ρ, u, p, cs} is known (at some particular point),
then the rest are known automatically. C and M give

∂ρ

∂t
= −∂(ρu)

∂x
= −d(ρu)

dρ

∂ρ

∂x

∂u

∂t
= −u∂u

∂x
− 1

ρ

∂p

∂x
= −

(
u+

1

ρ

dp

du

)
∂u

∂x

= −
(
u+ ρ

du

dρ

)
∂ρ

∂x
= −

(
u+

c2s
ρ

dρ

du

)
∂u

∂x

Now consider the 2D x-t plane. At any time, we could pick an x value, and the fluid will have
some value of, for example, ρ (and corresponding values of p, u, cs...). If we join together all
the points in x-t space with, say, ρ = ρ1, what will the gradient of that curve be in x-t space

8?
It would be ∂x/∂t

∣∣
ρ
for the value ρ = ρ1. According to the cyclic chain rule and the above,

∂x

∂t

∣∣∣∣
ρ

= −
∂ρ/∂t

∣∣
x

∂ρ/∂x
∣∣
t

= u+ ρ
du

dρ
Similarly,

∂x

∂t

∣∣∣∣
u

= −
∂u/∂t

∣∣
x

∂u/∂x
∣∣
t

= u+
c2s
ρ

dρ

du

where we have identified the unspoken notation ∂ρ/∂t ≡ ∂ρ/∂t
∣∣
x
. Now because u is a function

of ρ, if ρ is equal to the constant ρ1 all along that curve then u will also be a constant, u(ρ1),

7Well, it’s a scalar so I guess technically a “speed field”
8this is the speed at which a compression or rarefaction would move along the axis
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along that curve, so ∂x/∂t
∣∣
ρ
= ∂x/∂t

∣∣
u
= ∂x/∂t

∣∣
p
... Equating these two expressions,

ρ
du

dρ
=
c2s
ρ

dρ

du
⇒ du

dρ
= ±cs

ρ
⇒ u(ρ) = ±

∫
cs(ρ)

ρ
dρ = ± 2

γ − 1
cs(ρ) + u∗

⇒ u(ρ) = ± 2

γ − 1
(γK)1/2ρ

γ−1
2 + u∗ cs(u) = ±γ − 1

2
(u− u∗)

Figure 2 | Intersection of some velocity loci.
Some of the loci of points with u =
−U, 0, U are shown. Intersection of
these loci occurs at t = π

U(γ+1) , at
which points the velocity becomes mul-
tivalued. Only a few loci are shown
here; this is not the earliest time where
a locus intersection occurs (see §5.2.2).
In this plot u∗ = 0 for simplicity;
changing u∗ does not affect the inter-
section time, but rather slants all of
the lines equally, as would occur after
a Galilean boost.

where we have used cs ∝ ρ
γ−1
2 to evaluate

the integral, and defined the arbitrary con-
stant u∗, which relates the initial velocity and
density distributions u0(x) and ρ0(x). From
the above formula for u(ρ), we see that al-
though u0(x) and ρ0(x) cannot be specified
completely independently9, a completely ar-
bitrary constant can be legally added to u(x).
This probably says something deep about
the symmetry of the fluid equations under
Galilean transformations. Anyway the above
formulae finally relate u to ρ and cs.

Now consider the function10 x = x(u, t).
Recall

∂x

∂t

∣∣∣∣
u

= u+
c2s
ρ

dρ

du
= u±cs(u) =

γ + 1

2
u−γ − 1

2
u∗

⇒ x(u, t) =

(
γ + 1

2
u− γ − 1

2
u∗

)
t+f(u)

which is an implicit relation for u(x, t), which
unfortunately is inaccessible in explicit form;
f(u) is set by the initial condition: at t = 0,
u(x, 0) ≡ u0(x), and x(u, 0) = f(u); thus f(u)
and u0(x) are inverses:

⇒ x(u, t) =

(
γ + 1

2
u− γ − 1

2
u∗

)
t+ u−1

0 (u)

Whereas u0(x) and u(x, t) must clearly be single-valued (if u were multivalued at some x value,
where would the fluid go from there?!), the function x(u, t) may be multivalued. Suppose
u0(x) = U sinx: the values of x at which u = 0 (stagnation points) are at a certain time t
given by x(u = 0, t) = −γ−1

2
u∗t+ nπ, for n ∈ Z. These will be straight lines in x-t space, with

a gradient −γ−1
2
u∗. In other words, the stagnation points travel at constant speed. Similarly,

seeking the loci where u = U , we have x(u = U, 0) =
(
γ+1
2
U − γ−1

2
u∗
)
t+ π/2+ 2πm for n ∈ Z.

These are also straight lines in x-t space, but with importantly with a different gradient and
starting point (x-intercept, at t = 0). As such, there will come a time when the lines cross. For
the branches with n = 1 and m = 0, the two lines intersect at a time t = π

γ+1
1
U
(see Figure 2).

9u0(x) ∝ ρ0(x)
γ−1
2 +const., so we can’t have e.g. u0 ∝ ln (ρ0)

10This function is the answer to: given a time t, at what value(s) of x is the fluid moving at speed u?

15



This is a problem. Suppose more generally that the loci of u = u1 and u = u2 cross at
location x after a time t. At this point, u(x, t) will become multivalued, as the point lies on
both the u = u1 and u = u2 loci. Ultimately this occurs because the x-values at which u has
a particular value propagate along the axis at a speed

v ≡ ∂x

∂t

∣∣∣∣
u

= u± cs(u) =
γ + 1

2
u− γ − 1

2
u∗

which is u-dependent. More precisely, it is a monotonically-increasing function of u, so any
peaks in the velocity distribution travel along the axis faster, eventually “catching up” with the
troughs. A sinusoidal initial velocity distribution will therefore evolve into a sawtooth shape;
the blades then bulldoze through the slower regions of the fluid at the maximum v. This is the
most simple illustration of a shock.

5.2.2 Inviscid Burger’s Equation

To derive the earliest time at which shocks occur, we first derive the inviscid Burger’s equation.
Considering the above quantity v, we derive:

∂v

∂t
=
∂u

∂t
± dcs

du

∂u

∂t
=

(
1± dcs

du

)
∂u

∂t

∂v

∂x
=

(
1± dcs

du

)
∂u

∂x

⇒ ∂v/∂t

∂v/∂x
=

∂u/∂t

∂u/∂x
= −

(
u+

c2s
ρ

dρ

du

)
= −(u± cs) = −v ⇒ ∂v

∂t
+ v

∂v

∂x
= 0 (B)

This equation has the implicit solution v(x, t) = V (x− vt), for an arbitrary function V :

∂v

∂t
= V ′(x− vt)

[
−∂v
∂t
t− v

]
= − vV ′

1 + V ′t

∂v

∂x
= V ′(x− vt)

[
1− ∂v

∂x
t

]
=

V ′

1 + V ′t

The function V can be fixed by the initial conditions: if u0(x) is known, then V (x) = u0(x)±
cs(u0(x)) =

γ+1
2
u0(x)− γ−1

2
u∗. The implicit solution is then v = γ+1

2
u0(x− vt)− γ−1

2
u∗

For a shock to form, we require ∂u/∂x → ∞ ⇒ ∂v/∂x → ∞, or

0 =
1

∂v/∂x
=

1 + V ′t

V
⇒ ts = − 1

V ′

The earliest time at which a shock occurs (minimum ts) therefore depends on the minimum
(i.e. most negative) value of V ′, which makes sense as if a part of the fluid is propagating much
faster than the part in front (V ′ ≪ 0), they will collide quicker than if two adjacent parts of
the fluid are travelling at similar speeds (V ′ ≈ 0). If a part of the fluid is propagating slower
than the part in front (V ′ > 0) then it will fall behind the part in front and never catch up.

For the fluid we have been considering, ts is the minimum of γ+1
2
u′0(x). For the u0 = U sinx

Ansatz from earlier, we find ts =
2

U(γ+1)
, a bit earlier than the t = π

U(γ+1)
at which two of the

loci we (arbitrarily) chose intersected.

5.2.3 Riemann Invariants

We now generalise somewhat to a no longer simple, but still adiabatic and non-magnetic, gas,
so u ̸= u(ρ) ̸= u(cs). We now derive the Riemann Invariants J±, apparently useful quantities.
M and (±cs/ρ)× C give

∂u

∂t
+ u

∂u

∂x
+
c2s
ρ

∂ρ

∂x
= 0 ± cs

ρ

(
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x

)
= 0
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Summing, ⇒ ∂u

∂t
± cs
ρ

∂ρ

∂t
+ u

∂u

∂x
± cs

∂u

∂x
+ u

(
±cs
ρ

∂ρ

∂x

)
± u

cs
ρ

∂ρ

∂x
+ cs

cs
ρ

∂ρ

∂x

∂

∂t

(
u±

∫
cs
ρ
dρ

)
+ (u± cs)

∂

∂x

(
u±

∫
cs
ρ
dρ

)
= 0

Define J± ≡ u±
∫
cs
ρ
dρ ⇒ ∂J±

∂t
+ (u± cs)

∂J±
∂x

= 0

Note that u = (J+ + J−)/2. Now consider the quantity ∂x/∂t
∣∣
J±
: from the above and the

triple product rule, this is equal to −(∂J±/∂t)/(∂J±/∂x) = u± cs. Curves of constant J± in
x-t space thus have gradients u± cs. Unlike for a simple gas, where constant u meant constant
∂x/∂t

∣∣
u
, constant J± does not mean constant ∂x/∂t

∣∣
J±
, so these lines will be curved. These

lines crisscross the x-t plane, and are apparently useful for numerical integration.

5.3 Shock Waves

Shock waves are mathematical discontinuities in fluid quantities, caused by non-ideal fluid
behaviour due to e.g. sharp gradients in ρ or u. Viscosity contributes an extra term to the
momentum equation: ν

[
∇2u+∇(∇ · u)

]
, where the kinematic viscosity ν is usually very

small for astrophysical fluids. Thus this term only becomes important for areas where u
changes very quickly, and can be neglected elsewhere. Viscosity is thus important within
shocks, where it mediates an irreversible dissipation of differential kinetic energy into heat,
acting as an entropy source. We will not look at the details what goes on within the shock,
simply what happens on either side; this enables us to use familiar formulae here.

The kinematic viscosity is of order ν ∼ λcs, which makes sense as viscosity is a microscopic
process. To estimate the widthW of the shock, we balance the viscosity term of the momentum
equation with the advective term, and find that W is very small, of order the mean free path:

ν∇2u ∼ (u · ∇)u ⇒ λcs
cs
W 2

∼ c2s
W

⇒ W ∼ λ

5.3.1 Shock Jump Conditions

Consider an infinite planar shock, wlog propagating in the x-direction at velocity V ∥ x̂ in
some rest frame, so that ∂y = ∂z = 0. We will work in the frame of the shock, so that the
already-shocked fluid is travelling at velocity u1 and the as-yet-unshocked fluid is travelling at
u2; to transform back to the rest frame one should add V to the velocities; if the unshocked
fluid is stationary in the rest frame then we will have u2 = −V.

We now wish to relate ρ, p, u and B in the shocked fluid to those in the unshocked fluid; we
neglect gravity. In the frame of the shock, everything is in steady state ⇒ ∂/∂t = 0. Recalling
that some variables can be assigned a flux F such that ∂q/∂t +∇ ·Fq = 0, we therefore have
∂Fx/∂x = 0. Integrating over the shock, we therefore have Fx2 − Fx1 ≡ [Fx] = 0.

C :
∂ρ

∂t
+∇ · (ρu) = 0 ⇒ [ρux] = 0

M :
∂(ρu)

∂t
+∇ ·Π = 0 ⇒ [Πxx] = 0 ⇒

[
ρu2x + p+

B2 − 2B2
x

8π

]
= 0

⇒ [Πxy] = 0 ⇒
[
ρuxuy −

BxBy

4π

]
= 0 (sim. z)
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E :
∂ϵ

∂t
+∇ · Fϵ = 0 ⇒ [Fϵ,x] = 0 ⇒

[
ρux

(
1

2
|u|2 + h

)
+

c

4π
(E×B)x

]
= 0

∇ ·B = 0 ⇒ [Bx] = 0

∂B

∂t
+ c∇× E = 0 ⇒ [Ey] = 0 (sim. z)

where we have twice noted the symmetry of the setup under y ↔ z. This gives us 1+ (1+2)+
1 + 1 + 2 = 8 relations between the 1 + 3 + 1 + 3 variables ρ, u, p, B on either side (recalling
that E = u×B/c). Thus if we know all 8 of the values of these variables on one side, we can
deduce all of the 8 values on the other side.

Note that [s] = cV [ln (pρ
−γ)] ̸= 0. Although the fluid on either side is ideal, viscosity

generates entropy within the shock.

5.3.2 Non-Magnetic Normal Shocks

Setting B = 0, ux = u, uy = uz = 0 and dividing some jump conditions by the first, we find

[ρu] = 0

[
u+

p

ρu

]
= 0

[
1

2
u2 +

γ

γ − 1

p

ρ

]
= 0

We define the Mach number of a shock as M ≡ ux1/cs1. The sound speed is c2s = γp/ρ, so[
u

(
1 +

1

γM2

)]
= 0

[
u2
(
1

2
+

1

(γ − 1)M2

)]
= 0

u1

(
1 +

1

γM2

)
= u2

(
1 +

1

γM2
2

)
u21

(
1

2
+

1

(γ − 1)M2

)
= u22

(
1

2
+

1

(γ − 1)M2
2

)
(u1 − u2)

(
1 +

1

γM2

)
=
u2
γ

(
1

M2
2

− 1

M2

) (
u21 − u22

)(1

2
+

1

(γ − 1)M2

)
=

u22
γ − 1

(
1

M2
2

− 1

M2

)
Dividing the 2nd equation by the 1st:

(u1 + u2)

1
2
+ 1

(γ−1)M2

1 + 1
γM2

=
γ

γ − 1
u2 ⇒ u1

u2
=

(γ + 1)M2

(γ − 1)M2 + 2
=
ρ2
ρ1

where in the final equality we have used the first jump condition. Note that for a strong shock
(M ≫ 1), the ratio does not increase arbitrarily large, but up to a maximum of (γ + 1)/(γ − 1),
equal to 4 for a monatomic gas with γ = 5/3.

5.4 Supernovae

5.4.1 Ejecta Phase

A supernova is a sudden explosion of Mej ∼ 1M⊙ in a spherically symmetric manner, with an
energy E0 ∼ 1051erg; the ejecta thus explodes at vej =

√
2E0/Mej ∼ 104kms−1 ≫ 1kms−1 ∼

cs,ISM , causing an outwardly propagating shock bubble in the ISM. Initially, the ejection speed
is roughly constant, as the ISM into which the ejecta is flung has a much lower density. However,
the shock accumulates material from the ISM, with a density ρ0 ∼ 1mP cm

−3; when the mass of
this accumulated material is of order Mej, its inertia becomes significant enough for the shock
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to notice that the ISM is actually there, rather than just barrelling through it. This transition
occurs when the shock bubble has reached a radius RT , where

4

3
πρ0R

3
T ∼Mej ⇒ RT ∼ 2pc

and after a time tT ∼ RT/vej ∼ 200yr. By then, the explosion’s energy has been almost entirely
dissipated to the thermal energy of the ISM behind the shock, and it subsequently slows down
in a very characteristic way.

5.4.2 Adiabatic Sedov-Taylor Phase

The only important variables post-transition are E0 and ρ0. The time evolution of the bubble’s
radius R(t) can be derived by dimensional analysis:

{R} = L, {t} = T, {E0} = ML2T−2, {ρ0} = ML−3 ⇒ R(t) = α

(
E0

ρ0
t2
)1/5

∝ t2/5

for some constant α, which we will deduce later.
The two variables distinguishing one supernova from another (E0 and ρ0) cannot be used to

construct a length scale. The problem is therefore “self-similar”, and means that all variables
f(r, t) can be angesetzt as a function of the dimensionless similarity variable ξ ≡ r/R(t),
multiplied by a time-dependent dimensional constant: f(r, t) = f0(t)f̃(ξ). For example:

ρ(r, t) = ρ0ρ̃(ξ) u(r, t) = Ṙ(t)ũ(ξ) p(r, t) = ρ0Ṙ(t)
2p̃(ξ)

Note that we will only be interested in the region inside the bubble: r < R, ξ < 1; outside
the bubble the ISM has not been affected by the blast wave and the variables simply take the
background ISM values.

Before substituting these Ansätze11 into the fluid equations, we first note some lemmata11:

∂f̃

∂t
=
∂ξ

∂t

df̃

dξ
= − r

R2
Ṙ
df̃

dξ
= −Ṙ

R
ξ
df̃

dξ

∂f̃

∂r
=
∂ξ

∂r

df̃

dξ
=

1

R

df̃

dξ

R(t) ∝ t2/5 ⇒ Ṙ

R
=

2

5t
, and

R̈

R
= − 6

25t2
= −3

2

Ṙ
2

R2

Substituting into C and M, and noting that R depends on t but not ξ to help cancelling,

0 =
∂ρ

∂t
+

1

r2
∂

∂r

(
r2ρu

)
0 =

∂u

∂t
+ u

∂u

∂r
+

1

ρ

∂p

∂r

0 = −Ṙ
R
ξ
dρ̃

dξ
+

1

R2ξ2
1

R

d

dξ

(
R2ξ2ρ̃Ṙũ

)
0 = R̈ũ− ξṘ

2dũ

dξ
+
Ṙ

2

R
ũ
dũ

dξ
+
Ṙ

2

R

1

ρ̃

dp̃

dξ

0 = −ξdρ̃
dξ

+
1

ξ2
d

dξ

(
ξ2ρ̃ũ

)
0 = −ξdũ

dξ
+ ũ

dũ

dξ
+

1

ρ̃

dp̃

dξ
+
RR̈

Ṙ
2

0 = (ũ− ξ)
dρ̃

dξ
+
ρ̃

ξ2
d

dξ

(
ξ2ũ
)

0 = (ũ− ξ)
dũ

dξ
+

1

ρ̃

dp̃

dξ
+
RR̈

Ṙ
2

where we have neglected B fields and gravity.

11Languages!
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Now for energy. Note ϵ = ρ
(
1
2
u2 + e

)
= 1

2
ρu2 + 1

γ−1
p, and Fϵ,r = u

(
1
2
ρu2 + γ

γ−1
p
)
. Thus

∂ϵ

∂t
+

1

r2
∂

∂r

(
r2Fϵ,r

)
= 0 ⇒ ∂

∂t

(
r2ϵ︸︷︷︸
≡q

)
+
∂

∂r

(
r2Fϵ,r︸ ︷︷ ︸
≡F

)
= 0 ⇒ ∂q

∂t
+
∂F

∂r
= 0 (e)

where we have defined q ≡ r2ϵ and F ≡ r2Fϵ,r. They have the self-similar forms:

q = ρ0R
2Ṙ

2
ξ2
(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
F = ρ0R

2Ṙ
3
ξ2ũ

(
1

2
ρ̃ũ2 +

γ

γ − 1
p̃

)
Now defining the dimensionless variables q̃(ξ) and F̃ (ξ) by:

q ≡ ρ0R
2Ṙ

2
q̃ F ≡ ρ0R

2Ṙ
3
F̃

⇒ q̃ = ξ2
(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
F̃ = ξ2ũ

(
1

2
ρ̃ũ2 +

γ

γ − 1
p̃

)
by comparison. Substituting into e, and using the easily derived d

dt

(
R2Ṙ

2
)
= −RṘ3

,

−ρ0RṘ
3
q̃+ρ0R

2Ṙ
2

(
−Ṙ
R
ξ
dq̃

dξ

)
+ρ0R

2Ṙ
3 1

R

dF̃

dξ
= 0 ⇒ 0 = −q̃−ξdq̃

dξ
+
dF̃

dξ
=

d

dξ

(
F̃ − ξq̃

)
Thus F̃ = ξq̃; the integration constant is 0 (consider ξ = 0). Unwrapping F̃ and q̃,

ξ2ũ

(
1

2
ρ̃ũ2 +

γ

γ − 1
p̃

)
= ξ3

(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
⇒ p̃ =

γ − 1

2

ũ− ξ

ξ − γũ
ρ̃ũ2

Substituting this into M gives an equation in dρ̃/dξ , ũ and dũ/dξ . Eliminating the ρ̃ terms
with C gives an ODE in ũ. Defining the variable v ≡ ũ/ξ, this ODE is apparently12

dv

d ln ξ
=

v(γv − 1)[5− (3γ − 1)v]

γ(γ + 1)v2 − 2(γ + 1)v + 2

Perhaps surprisingly, this has an analytic, though implicit, solution, most easily derived by
inverting and using partial fractions.

Before giving the solution, we must first discuss the boundary conditions. The boundary
conditions are deduced by considering the conditions just on the inside of the shock bubble, at
r = R, ξ = 1. The shock produced by a supernova is certainly a strong shock, with M ≫ 1.
Thus we have ρ(r = R) = γ+1

γ−1
ρ0. As for the velocity, the velocity ratio is the inverse of the

density ratio, but this is for velocities in the shock frame, whereas u here is defined relative
to the r = 0 rest frame. In the shock frame, the ISM is moving towards r = 0 at a speed Ṙ,
so the shocked gas is moving towards r = 0 at γ−1

γ+1
Ṙ. Thus in the rest frame, the material is

moving at u(r = R) = Ṙ− γ−1
γ+1

Ṙ = 2
γ+1

Ṙ. We therefore have

ρ̃(1) =
γ + 1

γ − 1
ũ(1) =

2

γ + 1
p̃(1) =

2

γ + 1
v(1) =

2

γ + 1

12Even attempting this derivation takes bloody ages
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We can now deduce the full solution for ξ(v), and hence the forms of ρ̃(v) and p̃(v). To
simplify, we take a monatomic gas with γ = 5/3, leading to some gnarly powers:

ξ =

(
4v

3

)−2/5(
20v

3
− 4

)2/13(
5

2
− 2v

)−82/195

p̃ =
3

4096
(1− v)−5

(
4v

3

)6/5(
5

2
− 2v

)82/15

ρ̃ =
1

1024
(1− v)−6

(
20v

3
− 4

)9/13(
5

2
− 2v

)−82/13

ũ = ξv

Figure 3 | Dimensionless Fluid Variables
during a Supernova. Plotted are the
implicit solutions ρ̃(ξ), ũ(ξ) and p̃(ξ).
We see that ρ̃ is very small except near
ξ = 1, ũ ∼ ξ, and p̃ is almost constant
near to the centre of the bubble.

v is now simply a parametrisation, without
much physical meaning. What is the range
of v? We see that ξ(v = 3

5
) = 0, and that

ξ(v = 3
4
) = 1; we therefore conclude that v

varies from 0.6 to 0.75. Plotting ρ̃, ũ and p̃
against ξ over this range of v gives Figure 3.
We see that ρ̃ is close to 0 except near ξ = 1,
so most of the mass is swept into a thin shell
near r = R(t) at any given time. Further, ũ
is roughly proportional to ξ, giving a Hubble-
esque flow. Finally, p̃ is close to its central
value of≈ 0.23 for most of the radial distance.

5.4.3 Energy Conservation

We have almost finished the analysis, but
we need to scale things to find ξ’s time de-
pendence. We have established that R =

α(E0t
2/ρ0)

1/5
, but we have not yet estab-

lished the constant α. We are neglecting en-
ergy losses during this phase, so

E0 =

∫ R(t)

0

4πr2ϵ dr = 4πR3

∫ 1

0

ξ2ρ0Ṙ
2
(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
dξ

= 4πρ0α
5E0

ρ0

4

25

∫ 1

0

ξ2
(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
dξ

⇒ α =

[
16π

25

∫ 1

0

ξ2
(
1

2
ρ̃ũ2 +

1

γ − 1
p̃

)
dξ

]−1/5

For the above solution with γ = 5/3, this integrates (numerically!) to about 1.188.
Thus with the supernova parameters E0 and ρ0 specified, we have established the evolution

of R(t). We can then use this and the formulae for the dimensionless (tilde) variables (in terms
of the variable ξ = r/R(t), which is now also known) to find ρ(r, t), u(r, t) and p(r, t). Phew.

This adiabatic Sedov-Taylor phase lasts for ∼ 2000yr, before cooling processes such as
Bremsstrahlung become important and the adiabaticity is lost. As it cools down, the expanding
shell of material loses thermal pressure and compresses, but the inside of the shell is still hot,
and “snowploughs” this dense shell outwards into the ISM; this is the snowplough phase of the
supernova. Eventually, the shell slows below cs,ISM and essentially merges with the ISM.
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